Hostname: page-component-76c49bb84f-6sxsx Total loading time: 0 Render date: 2025-07-04T12:47:16.707Z Has data issue: false hasContentIssue false

SIMPLE TRACIALLY $\mathcal {Z}$-ABSORBING C*-ALGEBRAS

Published online by Cambridge University Press:  04 June 2025

Massoud Amini
Affiliation:
Faculty of Mathematical Sciences, https://ror.org/03mwgfy56Tarbiat Modares University, Tehran 14115-134
Nasser Golestani*
Affiliation:
Faculty of Mathematical Sciences, https://ror.org/03mwgfy56Tarbiat Modares University, Tehran 14115-134
Saeid Jamali
Affiliation:
Faculty of Mathematical Sciences, https://ror.org/03mwgfy56Tarbiat Modares University, Tehran 14115-134
N. Christopher Phillips
Affiliation:
Department of Mathematics, University of Oregon, Eugene OR 97403-1222

Abstract

We define a notion of tracial $\mathcal {Z}$-absorption for simple not necessarily unital C*-algebras, study it systematically and prove its permanence properties. This extends the notion defined by Hirshberg and Orovitz for unital C*-algebras. The Razak-Jacelon algebra, simple nonelementary C*-algebras with tracial rank zero, and simple purely infinite C*-algebras are tracially $\mathcal {Z}$-absorbing. We obtain the first purely infinite examples of tracially $\mathcal {Z}$-absorbing C*-algebras which are not $\mathcal {Z}$-absorbing. We use techniques from reduced free products of von Neumann algebras to construct these examples. A stably finite example was given by Z. Niu and Q. Wang in 2021. We study the Cuntz semigroup of a simple tracially $\mathcal {Z}$-absorbing C*-algebra and prove that it is almost unperforated and the algebra is weakly almost divisible.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Amini, M, Golestani, N, Jamali, S and Phillips, NC (2024) Finite group and integer actions on simple tracially $\mathcal {Z}$ -absorbing C*-algebras. J. Operator Th. 92, 505547.10.7900/jot.2022nov02.2417CrossRefGoogle Scholar
Ara, P, Perera, F and Toms, AS (2011) K-theory for operator algebras. Classification of C*-algebras. In Ara, P, Lledó, F and Perera, F (eds), Aspects of Operator Algebras and Applications, vol. 534. Contemporary Mathematics. Providence RI: American Mathematical Society, 171.10.1090/conm/534/10521CrossRefGoogle Scholar
Archey, D, Buck, J and Phillips, NC (2017) Centrally large subalgebras and tracial $\mathcal {Z}$ -absorption. Int. Math. Res. Not. 292, 121.Google Scholar
Archey, D and Phillips, NC (2020) Permanence of stable rank one for centrally large subalgebras and crossed products by minimal homeomorphisms. J. Operator Th. 83, 353389.10.7900/jot.2018oct10.2236CrossRefGoogle Scholar
Avitzour, D (1982) Free products of C*-algebras. Trans. Amer. Math. Soc. 271, 423435.Google Scholar
Blackadar, B (1978) Weak expectations and nuclear C*-algebras. Indiana Univ. Math. J. 27, 10211026.10.1512/iumj.1978.27.27070CrossRefGoogle Scholar
Blackadar, B (2006) Operator algebras. Theory of C*-Algebras and von Neumann Algebras , vol. 122. Encyclopaedia of Mathematical Sciences, Operator Algebras and Non-commutative Geometry, III. Berlin: Springer-Verlag.Google Scholar
Blackadar, B and Handelman, D (1982) Dimension functions and traces on C*-algebras. J. Funct. Anal. 45, 297340.10.1016/0022-1236(82)90009-XCrossRefGoogle Scholar
Blackadar, B, Robert, L, Tikuisis, AP, Toms, AS and Winter, W (2002) An algebraic approach to the radius of comparison. Trans. Amer. Math. Soc. 364, 36573674.10.1090/S0002-9947-2012-05538-3CrossRefGoogle Scholar
Barnett, L (1995) Free product von Neumann algebras of type $\mathrm{III}$ . Proc. Amer. Math. Soc. 123, 543553.Google Scholar
Castillejos, J and Evington, S (2020) Nuclear dimension of stably projectionless C*-algebras. Anal. PDE. 13(7), 22052240.10.2140/apde.2020.13.2205CrossRefGoogle Scholar
Castillejos, J, Evington, S, Tikuisis, A, White, S and Winter, W (2020) Nuclear dimension of simple C*-algebras, Invent. Math. https://doi.org/10.1007/s00222-020-01013-1.Google Scholar
Castillejos, J, Evington, S, Tikuisis, A and White, S, Uniform, Property $\Gamma$ . To appear in Int . Math. Res. Not. https://doi.org/10.1093/imrn/rnaa282.Google Scholar
Castillejos, J, Li, K and Szabó, G (2023) On tracial -stability of simple non-unital C*-algebras, Canad. J. Math. 120. doi:10.4153/S0008414X23000202.CrossRefGoogle Scholar
Cuntz, J (1981) K-theory for certain C*-algebras. Ann. Math. 113, 181197.10.2307/1971137CrossRefGoogle Scholar
Dykema, KJ (2002) Purely infinite, simple C*-algebras arising from free product constructions, II. Math. Scand. 90, 7386.10.7146/math.scand.a-14362CrossRefGoogle Scholar
Dykema, KJ and Rørdam, M (1998) Purely infinite simple C*-algebras arising from free product constructions. Canad. J. Math. 50, 323341.10.4153/CJM-1998-017-xCrossRefGoogle Scholar
Elliott, GA, Gong, G, Lin, H and Niu, Z (2020) Simple stably projectionless C*-algebras with generalized tracial rank one. J. Noncommut. Geom. 14, 251347.10.4171/jncg/367CrossRefGoogle Scholar
Elliott, GA, Robert, L and Santiago, L (2011) The cone of lower semicontinuous traces on a C*-algebra. Amer. J. Math. 133, 9691005.10.1353/ajm.2011.0027CrossRefGoogle Scholar
Forough, M and Golestani, N (2017) Tracial Rokhlin property for finite group actions on non-unital simple C*-algebras. arXiv preprint 1711.10818v1 [math.OA].Google Scholar
Forough, M and Golestani, N (2020) The weak tracial Rokhlin property for finite group actions on simple C*-algebras. Doc. Math. 25, 25072552.10.4171/dm/806CrossRefGoogle Scholar
Fu, X, Li, K and Lin, H (2022) Tracial approximate divisibility and stable rank one. J. Lond. Math. Soc. 106, 30083042.10.1112/jlms.12654CrossRefGoogle Scholar
Fu, X and Lin, H (2022) Non-amenable simple C*-algebras with tracial approximation. Forum of Mathematics, Sigma 10, 150.10.1017/fms.2021.79CrossRefGoogle Scholar
Gardella, E and Hirshberg, I (2020) Strongly outer actions of amenable groups on $\mathcal {Z}$ -stable C*-algebras. arXiv preprint 1811.00447v3 [math.OA].Google Scholar
Gong, G and Lin, H (2017) On classification of non-unital simple amenable C*-algebras, I. arXiv preprint 1611.04440v3 [math.OA].Google Scholar
Gong, G and Lin, H (2020) On classification of non-unital simple amenable C*-algebras, II. J. Geom. Phys. 158, 1102.10.1016/j.geomphys.2020.103865CrossRefGoogle Scholar
Gong, G and Lin, H (2022) On classification of non-unital amenable simple C*-algebras, III, stably projectionless C*-algebras. Ann. K-Theory 7, 279384.10.2140/akt.2022.7.279CrossRefGoogle Scholar
Hirshberg, I and Orovitz, J (2013) Tracially $\mathcal {Z}$ -absorbing C*-algebras. J. Funct. Anal. 265, 765785.10.1016/j.jfa.2013.05.005CrossRefGoogle Scholar
Jacelon, B (2013) A simple, monotracial, stably projectionless C*-algebra. J. London Math. Soc. (2) 87, 365383.10.1112/jlms/jds049CrossRefGoogle Scholar
Jamali, S (2018) Simple Tracially $\mathcal {Z}$ -Absorbing C*-Algebras. PhD thesis (Persian), Tarbiat Modares University.Google Scholar
Jiang, X and Su, H (1999) On a simple unital projectionless C*-algebra. Amer. J. Math. 121, 359413.10.1353/ajm.1999.0012CrossRefGoogle Scholar
Kerr, D, Dimension, comparison, and almost finiteness. To appear in J . Eur. Math. Soc. https://doi.org/10.4171/JEMS/995.Google Scholar
Kirchberg, E and Rørdam, M (2000) Non-simple purely infinite C*-algebras. Amer. J. Math. 122, 637666.10.1353/ajm.2000.0021CrossRefGoogle Scholar
Kirchberg, E and Rørdam, M (2002) Infinite non-simple C*-algebras: absorbing the Cuntz algebra ${\mathcal{O}}_{\infty }$ . Adv. Math. 167, 195264.10.1006/aima.2001.2041CrossRefGoogle Scholar
Kirchberg, E and Winter, W (2004) Covering dimension and quasidiagonality. Internat. J. Math. 15, 6385.10.1142/S0129167X04002119CrossRefGoogle Scholar
Lin, H (2001) The tracial topological rank of C*-algebras. Proc. London Math. Soc. (3) 83, 199234.10.1112/plms/83.1.199CrossRefGoogle Scholar
Lin, H (2001) Tracially AF C*-algebras. Trans. Amer. Math. Soc. 353, 693722.10.1090/S0002-9947-00-02680-5CrossRefGoogle Scholar
Lin, H (2001) An Introduction to the Classification of Amenable C*-Algebras. River Edge NJ: World Scientific.Google Scholar
Lin, H and Niu, Z (2008) Lifting KK-elements, asymptotic unitary equivalence and classification of simple C*-algebras. Adv. Math. 219, 17291769.10.1016/j.aim.2008.07.011CrossRefGoogle Scholar
Matui, H and Sato, Y (2012) Strict comparison and -absorption of nuclear C*-algebras. Acta Math. 209, 179196.10.1007/s11511-012-0084-4CrossRefGoogle Scholar
Niu, Z and Wang, Q (2021) A tracially AF algebra which is not $\mathrm{Z}$ -stable. Münster J. of Math. 14, 4157.Google Scholar
Nawata, N (2019) Trace scaling automorphisms of the stabilized Razak-Jacelon algebra, Proc. Lond. Math. Soc. (3) 118(3), 545576.10.1112/plms.12195CrossRefGoogle Scholar
Orovitz, J, Phillips, NC and Wang, Q, Strict comparison and crossed products. In preparation.Google Scholar
Osaka, H and Phillips, NC (2006) Stable and real rank for crossed products by automorphisms with the tracial Rokhlin property. Ergod. Th. Dynam. Sys. 26, 15791621.10.1017/S0143385706000265CrossRefGoogle Scholar
Pedersen, GK (1979) C*-Algebras and Their Automorphism Groups. London, New York, San Francisco: Academic Press.Google Scholar
Phillips, NC (2014) Large subalgebras. arXiv preprint 1408.5546v1 [math.OA].Google Scholar
Raeburn, I and Williams, DP (1998) Morita Equivalence and Continuous-Trace C*-Algebras , no. 60. Mathematical Surveys and Monographs. Providence RI: American Mathematical Society.Google Scholar
Rørdam, M (1992) On the structure of simple C*-algebras tensored with a UHF-algebra, II. J. Funct. Anal. 107, 255269.10.1016/0022-1236(92)90106-SCrossRefGoogle Scholar
Rørdam, M (2002) Classification of nuclear, simple C*-algebras. In Rørdam, M and Størmer, E, Classification of Nuclear C*-algebras. Entropy in Operator Algebras, vol. 126. Encyclopaedia of Mathematical Sciences. Berlin: Springer-Verlag, 1145.10.1007/978-3-662-04825-2_1CrossRefGoogle Scholar
Rørdam, M (2004) The stable and the real rank of $\mathcal {Z}$ -absorbing C*-algebras. Internat. J. Math. 15, 10651084.10.1142/S0129167X04002661CrossRefGoogle Scholar
Tikuisis, A (2014) Nuclear dimension, $Z$ -stability, and algebraic simplicity for stably projectionless C*-algebras. Math. Ann. 358, 729778.10.1007/s00208-013-0951-0CrossRefGoogle Scholar
Toms, AS and Winter, W (2007) Strongly self-absorbing C*-algebras. Trans. Amer. Math. Soc. 359, 39994029.10.1090/S0002-9947-07-04173-6CrossRefGoogle Scholar
Winter, W (2012) Nuclear dimension and $\mathcal {Z}$ -stability of pure C*-algebras. Invent. Math. 187, 259342.10.1007/s00222-011-0334-7CrossRefGoogle Scholar
Winter, W (2014) Localizing the Elliott conjecture at strongly self-absorbing C*-algebras. J. Reine Angew. Math. 692, 193231.10.1515/crelle-2012-0082CrossRefGoogle Scholar
Winter, W and Zacharias, J (2009) Completely positive maps of order zero. Münster J. Math. 2, 311324.Google Scholar