Published online by Cambridge University Press: 20 August 2020
We study the stability of the differential process of Rochberg and Weiss associated with an analytic family of Banach spaces obtained using the complex interpolation method for families. In the context of Köthe function spaces, we complete earlier results of Kalton (who showed that there is global bounded stability for pairs of Köthe spaces) by showing that there is global (bounded) stability for families of up to three Köthe spaces distributed in arcs on the unit circle while there is no (bounded) stability for families of four or more Köthe spaces. In the context of arbitrary pairs of Banach spaces, we present some local stability results and some global isometric stability results.
The research of the first author was supported in part by Project IB16056 de la Junta de Extremadura; the research of the first and fourth authors was supported in part by Project MTM2016-76958, Spain. The research of the second author was supported in part by CNPq, grant 140413/2016-2, CAPES, PDSE program 88881.134107/2016-0, and FAPESP, grants 2016/25574-8 and 2018/03765-1. The research of the third author was supported by FAPESP, grants 2013/11390-4, 2015/17216-1, 2016/25574-8 and by CNPq, grants 303034/2015-7 and 303731/2019-2.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.