Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T19:08:49.190Z Has data issue: false hasContentIssue false

ON A PROBLEM OF TALAGRAND CONCERNING SEPARATELY CONTINUOUS FUNCTIONS

Published online by Cambridge University Press:  06 February 2020

Volodymyr Mykhaylyuk
Affiliation:
Jan Kochanowski University in Kielce, Poland Yurii Fedkovych Chernivtsi National University, Ukraine (vmykhaylyuk@ukr.net)
Roman Pol
Affiliation:
University of Warsaw, Poland (pol@mimuw.edu.pl)

Abstract

We construct a separately continuous function $e:E\times K\rightarrow \{0,1\}$ on the product of a Baire space $E$ and a compact space $K$ such that no restriction of $e$ to any non-meagre Borel set in $E\times K$ is continuous. The function $e$ has no points of joint continuity, and, hence, it provides a negative solution of Talagrand’s problem in Talagrand [Espaces de Baire et espaces de Namioka, Math. Ann.270 (1985), 159–164].

Type
Research Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balcar, B., Frankiewicz, R. and Mills, Ch., More on nowhere dense closed P-sets, Bull. Pol. Acad. Sci. 28 (1980), 295299.Google Scholar
Bouziad, A., Cliquishness and quasicontinuity of two-variable maps, Canad. Math. Bull. 56(1) (2013), 5564.Google Scholar
Burke, M. R., Kubiś, W. and Todorčević, S., Kadec norm on spaces of continuous functions, Serdica Math. J. 32(2–3) (2006), 227258.Google Scholar
Burke, D. K. and Pol, R., On Borel sets in function spaces with the weak topology, J. Lond. Math. Soc. (2) 68(2) (2003), 725738.Google Scholar
Burke, D. K. and Pol, R., Note of separate continuity and the Namioka property, Top. Appl. 152 (2005), 258268.Google Scholar
Debs, G., Fonctions séparément continues et de première classe sur un espace produit, Math. Scand. 59 (1986), 122130.Google Scholar
Debs, G., Points de continuité d’une fonctions séparément continue, Proc. Amer. Math. Soc. 97 (1986), 167176.Google Scholar
Deville, R. and Godefroy, G., Some applications of projective resolutions of identity, Proc. Lond. Math. Soc. (3) 67 (1993), 183199.Google Scholar
Deville, R., Godefroy, G. and Zizler, V., Smoothness and Renormings in Banach Spaces (Longman Scientific Technical, Harlow; copublished in the United States with John Wiley Sons, Inc., New York, 1993).Google Scholar
Gillman, L. and Jerison, M., Rings of Continuous Functions (D. Van Nostrand Publ. Co., New York, 1960).Google Scholar
Gleason, A. M., Projective topological spaces, Illinois J. Math. 2 (1958), 482489.Google Scholar
Godefroy, G., Banach spaces of continuous functions on compact spaces, in Recent Progress in General Topology II(ed. Husek, M. and van Mill, J.), (Elsevier, North Holland, 2002).Google Scholar
Guirao, A. J., Montesinos, K. and Zizler, V., Open Problems in the Geometry and Analysis of Banach Spaces (Springer, Switzerland, 2016).Google Scholar
Kechris, A. S., Classical Descriptive Set Theory (Springer, New York, 1995).Google Scholar
Kenderov, P. S., Kortezov, I. S. and Moors, W. B., Norm continuity of weakly continuous mappings into Banach spaces, Top. Appl. 153 (2006), 27452759.Google Scholar
Kunen, K., Set Theory. Studies in Logic (College Publications, London, 2011).Google Scholar
Kunen, K., van Mill, J. and Mills, Ch., On nowhere dense closed P-sets, Proc. Amer. Math. Soc. 78 (1980), 119123.Google Scholar
Kuratowski, K., Topology. Volume 1 (Academic Press, New York, 1966).Google Scholar
Maslyuchenko, V. K., Connections between joint and separate properties of functions of several variables, in: Some open problems on functional analysis and function theory, Extracta Math. 20 (2005), 5170.Google Scholar
Mercourakis, S. and Negrepontis, S., Banach spaces and topology II, in Recent Progress in General Topology Chapter 16, (Elsevier, Amsterdam, 1992).Google Scholar
Mykhaylyuk, V., The Namioka property of KC-functions and Kempisty spaces, Top. Appl. 153 (2006), 24552461.Google Scholar
Mykhaylyuk, V., Namioka spaces and topological games, Bull. Austr. Math. Soc. 73 (2006), 263272.Google Scholar
Mykhaylyuk, V., On questions connected with the Talagrand problem, Matematyczni Studii 29 (2008), 8188. (in Ukrainian; English version: arXiv:1601.03163 [math.GN], 13 January 2016).Google Scholar
Namioka, I., Separate continuity and joint continuity, Pacific J. Math. 81 (1974), 515531.Google Scholar
Namioka, I. and Pol, R., Mappings of Baire spaces into function spaces and Kadeč renorming, Israel J. Math. 78 (1992), 120.Google Scholar
Rainwater, J., A note on projective resolutions, Proc. Amer. Math. Soc. 10 (1959), 734735.Google Scholar
Raja, M., Kadec norms and Borel sets in a Banach space, Studia Math. 136 (1999), 116.Google Scholar
Saint Raymond, J., Jeux topologiques et espaces de Namioka, Proc. Amer. Math. Soc. 87 (1983), 499504.Google Scholar
Talagrand, M., Espaces de Baire et espaces de Namioka, Math. Ann. 270 (1985), 159164.Google Scholar