We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Université Paris-Sud XI, Laboratoire de Mathématiques d’Orsay, CNRS, UMR 8628, FranceInstitut Universitaire de France, France (Patrick.Gerard@math.u-psud.fr)
Sandrine Grellier
Affiliation:
Fédération Denis Poisson, MAPMO-UMR 6628, Département de Mathématiques, Université d’Orleans, 45067 Orléans Cedex 2, France (Sandrine.Grellier@univ-orleans.fr)
we prove that there exists a unique sequence $c= ({c}_{n} )_{n\in { \mathbb{Z} }_{+ } } $, real valued, such that the Hankel operators ${\Gamma }_{c} $ and ${\Gamma }_{\tilde {c} } $ of symbols $c= ({c}_{n} )_{n\geq 0} $ and $\tilde {c} = ({c}_{n+ 1} )_{n\geq 0} $, respectively, are selfadjoint compact operators on ${\ell }^{2} ({ \mathbb{Z} }_{+ } )$ and have the sequences $({\lambda }_{j} )_{j\geq 1} $ and $({\mu }_{j} )_{j\geq 1} $, respectively, as non-zero eigenvalues. Moreover, we give an
explicit formula for $c$ and we describe the kernel of ${\Gamma }_{c} $ and of ${\Gamma }_{\tilde {c} } $ in terms of the sequences $({\lambda }_{j} )_{j\geq 1} $ and $({\mu }_{j} )_{j\geq 1} $. More generally, given two arbitrary sequences $({\rho }_{j} )_{j\geq 1} $ and $({\sigma }_{j} )_{j\geq 1} $ of positive numbers satisfying
we describe the set of sequences $c= ({c}_{n} )_{n\in { \mathbb{Z} }_{+ } } $ of complex numbers such that the Hankel operators ${\Gamma }_{c} $ and ${\Gamma }_{\tilde {c} } $ are compact on ${\ell }^{2} ({ \mathbb{Z} }_{+ } )$ and have sequences $({\rho }_{j} )_{j\geq 1} $ and $({\sigma }_{j} )_{j\geq 1} $, respectively, as non-zero singular values.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
Adamyan, V. M., Arov, D. Z. and Krein, M. G., Analytic properties of the Schmidt pairs of a Hankel operator
and the generalized Schur–Takagi problem, Mat. Sb.
(N.S.)86(128) (1971), 34–75 (in
Russian).Google Scholar
2
Gérard, P. and Grellier, S., The cubic Szegő equation, Ann. Sci.
Éc. Norm. Supér43 (2010),
761–810.Google Scholar
3
Gérard, P. and Grellier, S., Invariant Tori for the cubic Szegő equation,
Invent. Math.187 (2012),
707–754.Google Scholar
4
Hartman, P., On completely continuous Hankel matrices,
Proc. Amer. Math. Soc.9 (1958),
862–866.Google Scholar
5
Kronecker, L., Zur Theorie der Elimination einer Variabeln aus zwei
algebraischen Gleichungen, Monatsber. Königl. Preuss.
Akad. Wiss. (Berlin) (1881),
535–600, Reprinted in Leopold Kronecker’s
Werke, vol. 2, 113–192, Chelsea, 1968.Google Scholar
6
Lax, P., Integrals of nonlinear equations of evolution and solitary
waves, Comm. Pure Appl. Math.21 (1968),
467–490.Google Scholar
7
Lax, P., Periodic solutions of the KdV equation,
Comm. Pure Appl. Math.28 (1975),
141–188.Google Scholar
8
Megretskii, A. V., Peller, V. V. and Treil, S. R., The inverse problem for selfadjoint Hankel
operators, Acta Math.174 (1995),
241–309.Google Scholar
9
Nehari, Z., On bounded bilinear forms, Ann. of
Math. (2)65 (1957),
153–162.Google Scholar
10
Nikolskii, N. K., Operators, functions, and systems: an easy reading. Vol. 1. Hardy,
Hankel, and Toeplitz, Mathematical Surveys and
Monographs, Volume Volume 92 (American
Mathematical Society, Providence,
RI, 2002), Translated from the French by Andreas
Hartmann.Google Scholar
11
Nikolskii, N. K., Treatise on the shift operator, in
Spectral function theory. With an appendix by S. V. Khrushchëv and V. V.
Peller, Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], Volume Volume
273 (Springer-Verlag,
Berlin, 1986), Translated from the
Russian by Jaak Peetre.Google Scholar
12
Peller, V. V., Hankel operators of class ${\mathfrak{S}}_{p} $ and their applications (rational approximation, Gaussian
processes, the problem of majorization of operators),
Math. USSR Sb.41 (1982),
443–479.CrossRefGoogle Scholar
13
Peller, V. V., Hankel operators and their applications, Springer
Monographs in Mathematics
(Springer-Verlag, New
York, 2003).Google Scholar
14
Rudin, W., Real and complex analysis, 2nd edn
(Mac Graw Hill,
1980).Google Scholar
15
Treil, S. R., Moduli of Hankel operators and a problem of
Peller–Khrushchëv, Dokl. Akad. Nauk SSSR283(5) (1985), 1095–1099 (in
Russian); English transl. in Soviet Math. Dokl.32
(1985), 293–297.Google Scholar
16
Treil, S. R., Moduli of Hankel operators and the V. V. Peller–S. Kh.
Khrushchëv problem, Investigations on linear operators and
the theory of functions, XIV, Zap. Nauchn. Sem. Leningrad. Otdel.
Mat. Inst. Steklov. (LOMI)141 (1985), 39–55(in
Russian).Google Scholar
17
Zakharov, V. E. and Shabat, A. B., Exact theory of two-dimensional self-focusing and
one-dimensional self-modulation of waves in nonlinear media,
Soviet Phys. JETP34(1) (1972),
62–69.Google Scholar
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Gérard, Patrick
and
Pushnitski, Alexander
2015.
An Inverse Problem for Self-adjoint Positive Hankel Operators.
International Mathematics Research Notices,
Vol. 2015,
Issue. 13,
p.
4505.
Gérard, Patrick
and
Grellier, Sandrine
2015.
On the growth of Sobolev norms for the cubic Szegő equation.
Séminaire Laurent Schwartz — EDP et applications,
p.
1.
Gérard, Patrick
and
Grellier, Sandrine
2019.
Generic colourful tori and inverse spectral transform for Hankel operators.
Tunisian Journal of Mathematics,
Vol. 1,
Issue. 3,
p.
347.
Gérard, Patrick
Pushnitski, Alexander
and
Treil, Sergei
2024.
An inverse spectral problem for non-compact Hankel operators with simple spectrum.
Journal d'Analyse Mathématique,
Vol. 154,
Issue. 1,
p.
333.
Pushnitski, Alexander
and
Štampach, František
2024.
An Inverse Spectral Problem for Non-Self-Adjoint Jacobi Matrices.
International Mathematics Research Notices,
Vol. 2024,
Issue. 7,
p.
6106.