We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
[1]
Abe, N., ‘A comparison between pro-
$p$
Iwahori–Hecke modules and
$\operatorname{mod}\ p$
representations’, Algebra Number Theory13(8) (2019), 1959–1981.CrossRefGoogle Scholar
Abe, N., Henniart, G., Herzig, F. and Vignéras, M.-F., ‘A classification of irreducible admissible mod
$p$
representations of
$p$
-adic reductive groups’, J. Amer. Math. Soc.30(2) (2017), 495–559.CrossRefGoogle Scholar
[6]
Abe, N., Henniart, G. and Vignéras, M.-F., ‘On pro-
$p$
-Iwahori invariants of
$R$
-representations of reductive
$p$
-adic groups’, Represent. Theory22 (2018), 119–159.CrossRefGoogle Scholar
[7]
Breuil, C. and Paškūnas, V., ‘Towards a modulo
$p$
Langlands correspondence for
$\mathrm{GL}_2$
’, Mem. Amer. Math. Soc.216(1016) (2012), vi+114.Google Scholar
[8]
Fayers, M., ‘0-Hecke algebras of finite Coxeter groups’, J. Pure Appl. Algebra199(1–3) (2005), 27–41.CrossRefGoogle Scholar
[9]
Grosse-Klönne, E., ‘From pro-
$p$
Iwahori–Hecke modules to
$\left(\varphi, \varGamma \right)$
-modules, I’, Duke Math. J.165(8) (2016), 1529–1595.CrossRefGoogle Scholar
[10]
Hauseux, J., ‘Extensions entre séries principales
$p$
-adiques et modulo
$p$
de
$G(F)$
’, J. Inst. Math. Jussieu15(2) (2016), 225–270.10.1017/S1474748014000243CrossRefGoogle Scholar
[11]
Hauseux, J., ‘Compléments sur les extensions entre séries principales
$p$
-adiques et modulo
$p$
de
$G(F)$
’, Bull. Soc. Math. France145(1) (2017), 161–192.CrossRefGoogle Scholar
[12]
Karol, K., ‘Homological dimension of simple pro-
$p$
-Iwahori–Hecke modules’, Math. Res. Lett.26(3) (2019), 769–804.Google Scholar
[13]
Nadimpalli, S., ‘On extensions of characters of affine pro-
$p$
Iwahori–Hecke algebra’, Preprint, arXiv:1703.03110.Google Scholar
[14]
Ollivier, R., ‘Compatibility between Satake and Bernstein isomorphisms in characteristic
$p$
’, Algebra Number Theory8(5) (2014), 1071–1111.CrossRefGoogle Scholar
[15]
Ollivier, R. and Schneider, P., ‘Pro-
$p$
Iwahori–Hecke algebras are Gorenstein’, J. Inst. Math. Jussieu134) (2014), 753–809.CrossRefGoogle Scholar
[16]
Paškūnas, V., ‘Extensions for supersingular representations of
$\mathrm{GL}_2\left({\mathbb{Q}}_p\right)$
’, Astérisque (331) (2010), 317–353.Google Scholar
[17]
Vignéras, M.-F., ‘Pro-
$p$
-Iwahori Hecke ring and supersingular
${\overline{\mathbf{F}}}_p$
-representations’, Math. Ann.331(3) (2005), 523–556.CrossRefGoogle Scholar
[18]
Vignéras, M.-F., ‘The pro-
$p$
-Iwahori Hecke algebra of a
$p$
-adic group III’, J. Inst. Math. Jussieu (2015), 1–38.Google Scholar
[19]
Vignéras, M.-F., ‘The pro-
$p$
Iwahori Hecke algebra of a reductive
$p$
-adic group, V (parabolic induction)’, Pacific J. Math.279(1–2) (2015), 499–529.CrossRefGoogle Scholar
[20]
Vignéras, M.-F., ‘The pro-
$p$
-Iwahori Hecke algebra of a reductive
$p$
-adic group I’, Compos. Math.152(4) (2016), 693–753.CrossRefGoogle Scholar