Published online by Cambridge University Press: 01 July 2004
Soit $G$ un groupe réductif $p$-adique connexe. Nous effectuons une décomposition spectrale sur $G$ à partir de la formule d’inversion de Fourier utilisée dans ‘Une formule de Plancherel pour l’algèbre de Hecke d’un groupe réductif $p$-adique’, V. Heiermann, Commun. Math. Helv.76 (2001), 388–415. Nous en déduisons essentiellement qu’une représentation cuspidale d’un sous-groupe de Levi M appartient au support cuspidal d’une représentation de carré intégrable de $G$ si et seulement si c’est un pôle de la fonction $\mu$ de Harish-Chandra d’ordre égal au rang parabolique de M. Ces pôles sont d’ordre maximal. Plus précisément, nous montrons que cette condition est nécessaire et que sa suffisance équivaut à une propriété combinatoire de la fonction $\mu$ de Harish-Chandra qui s’avère être une conséquence d’un résultat de E. Opdam. En outre, nous obtenons des identités entre des combinaisons linéaires de coefficients matriciels. Ces identités contiennent des informations sur le degré formel des représentations de carré intégrable ainsi que sur leur position dans la représentation induite.
Let $G$ be a reductive connected $p$-adic group. With help of the Fourier inversion formula used in ‘Une formule de Plancherel pour l’algèbre de Hecke d’un groupe réductif $p$-adique’, V. Heiermann, Commun. Math. Helv.76 (2001), 388–415, we give a spectral decomposition on $G$. In particular, we deduce from it essentially that a cuspidal representation of a Levi subgroup $M$ is in the cuspidal support of a square-integrable representation of $G$ if and only if it is a pole of Harish-Chandra’s $\mu$-function of order equal to the parabolic rank of $M$. These poles are of maximal order. In more explicit terms, we show that this condition is necessary and that its sufficiency is equivalent to a combinatorical property of Harish-Chandra’s $\mu$-function, which appears to be a consequence of a result of E. Opdam. We get also identities between some linear combinations of matrix coefficients. These identities contain information on the formal degree of square-integrable representations and on their position in the induced representation.
AMS 2000 Mathematics subject classification: Primary 22E50. Secondary 22E35; 11F70; 11F72; 11F85
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.