Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T23:17:12.703Z Has data issue: false hasContentIssue false

Characters and growth of admissible representations of reductive p-adic groups

Published online by Cambridge University Press:  13 June 2011

Ralf Meyer
Affiliation:
Mathematisches Institut and Courant Centre ‘Higher Order Structures’, Georg-August Universität Göttingen, Bunsenstraβe 3–5, 37073 Göttingen, Germany (rameyer@uni-math.gwdg.de; maarten@uni-math.gwdg.de)
Maarten Solleveld
Affiliation:
Mathematisches Institut and Courant Centre ‘Higher Order Structures’, Georg-August Universität Göttingen, Bunsenstraβe 3–5, 37073 Göttingen, Germany (rameyer@uni-math.gwdg.de; maarten@uni-math.gwdg.de)

Abstract

We use coefficient systems on the affine Bruhat–Tits building to study admissible representations of reductive p-adic groups in characteristic not equal to p. We show that the character function is locally constant and provide explicit neighbourhoods of constancy. We estimate the growth of the subspaces of invariants for compact open subgroups.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Adler, J. D. and Korman, J., The local character expansion near a tame, semisimple element, Am. J. Math. 129(2) (2007), 381403.CrossRefGoogle Scholar
2.Borel, A. and Tits, J., Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55150.CrossRefGoogle Scholar
3.Bruhat, F. and Tits, J., Groupes réductifs sur un corps local, I, Données radicielles valuées, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5251.CrossRefGoogle Scholar
4.Bruhat, F. and Tits, J., Groupes réductifs sur un corps local, II, Schémas en groupes; Existence d'une donnée radicielle valuée, Inst. Hautes Études Sci. Publ. Math. 60 (1984), 197376.Google Scholar
5.Casselman, W. A., Characters and Jacquet modules, Math. Annalen 230(2) (1977), 101105.CrossRefGoogle Scholar
6.Deligne, P., Le support du caractère d'une représentation supercuspidale, C. R. Acad. Sci. Paris Sér. A-B 283(4) (1976), A155–A157.Google Scholar
7.Harish-Chandra, , Collected papers (ed. Varadarajan, V. S.), Volume IV (Springer, 1984).CrossRefGoogle Scholar
8.Harish-Chandra, , Admissible invariant distributions on reductive p-adic groups (preface and notes by DeBacker, S. and Sally, P. J. Jr), University Lecture Series, Volume 16 (American Mathematical Society, Providence, RI, 1999).Google Scholar
9.Korman, J., A character formula for compact elements (the rank one case), preprint (math.RT/0409292; 2004).Google Scholar
10.Lang, S., Algebra, 3rd edn, Graduate Texts in Mathematics, Volume 211 (Springer, 2002).CrossRefGoogle Scholar
11.Meyer, R. and Solleveld, M., Resolutions for representations of reductive p-adic groups via their buildings, J. Reine Angew. Math. 647 (2010), 115150.Google Scholar
12.Moy, A. and Prasad, G., Unrefined minimal K-types for p-adic groups, Invent. Math. 116(1–3) (1994), 393408.CrossRefGoogle Scholar
13.Moy, A. and Prasad, G., Jacquet functors and unrefined minimal K-types, Comment. Math. Helv. 71(1) (1996), 98121.CrossRefGoogle Scholar
14.Ono, T., Arithmetic of algebraic tori, Annals Math. (2) 74 (1961), 101139.CrossRefGoogle Scholar
15.Prasad, G., Elementary proof of a theorem of Bruhat–Tits–Rousseau and of a theorem of Tits, Bull. Soc. Math. France 110(2) (1982), 197202.CrossRefGoogle Scholar
16.Prasad, G., Galois-fixed points in the Bruhat–Tits building of a reductive group, Bull. Soc. Math. France 129(2) (2001), 169174.CrossRefGoogle Scholar
17.Rousseau, G., Immeubles des groupes réductifs sur les corps locaux, Thesis, Université de Paris-Sud (1977).Google Scholar
18.Schneider, P. and Stuhler, U., Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. 85 (1997), 97191.CrossRefGoogle Scholar
19.Serre, J.-P., Local fields (transl. Greenberg, M. J.), Graduate Texts in Mathematics, Volume 67 (Springer, 1979).CrossRefGoogle Scholar
20.Springer, T. A., Linear algebraic groups, 2nd edn, Progress in Mathematics, Volume 9 (Birkhäuser, Boston, MA, 1998).CrossRefGoogle Scholar
21.Tits, J., Reductive groups over local fields, in Automorphic Forms, Representations and L-Functions, Oregon State University, Corvallis, OR, 1977, Part 1, pp. 2969, Proceedings of Symposia in Pure Mathematics, Volume 33 (American Mathematical Society, Providence, RI, 1979).Google Scholar
22.Vignéras, M.-F., Représentations l-modulaires d'un groupe réductif p-adique avec l ≠ p, Progress in Mathematics, Volume 137 (Birkhäuser, Boston, MA, 1996).Google Scholar
23.Vignéras, M.-F., Cohomology of sheaves on the building and R-representations, Invent. Math. 127(2) (1997), 349373.Google Scholar
24.Vignéras, M.-F. and Waldspurger, J.-L., Premiers réguliers de l'analyse harmonique mod l d'un groupe réductif p-adique, J. Reine Angew. Math. 535 (2001), 165205.Google Scholar