Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T23:07:29.555Z Has data issue: false hasContentIssue false

APPLICATIONS OF INVOLUTIVE HEEGAARD FLOER HOMOLOGY

Published online by Cambridge University Press:  04 April 2019

Kristen Hendricks
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, MI48824, USA (hendricks@math.msu.edu)
Jennifer Hom
Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, GA30332, USA (hom@math.gatech.edu)
Tye Lidman
Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, NC27607, USA (tlid@math.ncsu.edu)

Abstract

We use Heegaard Floer homology to define an invariant of homology cobordism. This invariant is isomorphic to a summand of the reduced Heegaard Floer homology of a rational homology sphere equipped with a spin structure and is analogous to Stoffregen’s connected Seiberg–Witten Floer homology. We use this invariant to study the structure of the homology cobordism group and, along the way, compute the involutive correction terms $\bar{d}$ and $\text{}\underline{d}$ for certain families of three-manifolds.

Type
Research Article
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author was partially supported by NSF grant DMS-1663778. The second author was partially supported by NSF grant DMS-1552285 and a Sloan Research Fellowship. The third author was partially supported by NSF grant DMS-1709702.

References

Dai, I. and Manolescu, C., Involutive Heegaard Floer homology and plumbed three-manifolds, Preprint, 2017, arXiv:1704.02020.CrossRefGoogle Scholar
Dai, I. and Stoffregen, M., On homology cobordism and local equivalence between plumbed manifolds, Preprint, 2017, arXiv:1710.08055.Google Scholar
Furuta, M., Homology cobordism group of homology 3-spheres, Invent. Math. 100(2) (1990), 339355.CrossRefGoogle Scholar
Gainullin, F., The mapping cone formula in Heegaard Floer homology and Dehn surgery on knots in S 3 , Algebr. Geom. Topol. 17(4) (2017), 19171951.CrossRefGoogle Scholar
Hom, J., Jennifer and Lidman, T., A note on positive-definite, symplectic four-manifolds, J. Eur. Math. Soc. (JEMS) 21(1) (2019), 257270.CrossRefGoogle Scholar
Hom, J., Lidman, T. and Zufelt, N., Reducible surgeries and Heegaard Floer homology, Math. Res. Lett. 22(3) (2015), 763788.CrossRefGoogle Scholar
Hendricks, K. and Manolescu, C., Involutive Heegaard Floer homology, Duke Math. J. 166(7) (2017), 12111299.CrossRefGoogle Scholar
Hendricks, K., Manolescu, C. and Zemke, I., A connected sum formula for involutive Heegaard Floer homology, Selecta Math. (N.S.) 24(2) (2018), 11831245.CrossRefGoogle Scholar
Juhász, A. and Thurston, D., Naturality and mapping class groups in Heegaard Floer homology, Preprint, 2012, arXiv:1210.4996.Google Scholar
Lin, J., Ruberman, D. and Saveliev, N., A splitting theorem for the Seiberg–Witten invariant of a homology S 1 × S 3 , Geom. Topol. 22(5) (2018), 28652942.CrossRefGoogle Scholar
Manolescu, C., Seiberg–Witten–Floer stable homotopy type of three-manifolds with b 1 = 0, Geom. Topol. 7 (2003), 889932.CrossRefGoogle Scholar
Manolescu, C., Pin(2)-equivariant Seiberg–Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29(1) (2016), 147176.CrossRefGoogle Scholar
Manolescu, C. and Ozsváth, P., Heegaard Floer homology and integer surgeries on links, Preprint, 2010, arXiv:1011.1317v3.Google Scholar
Ni, Y. and Wu, Z., Cosmetic surgeries on knots in S 3 , J. Reine Angew. Math. 706 (2015), 117.CrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173(2) (2003), 179261.CrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003), 225254.CrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311334.CrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., Holomorphic disks and knot invariants, Adv. Math. 186(1) (2004), 58116.CrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159(3) (2004), 11591245.CrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159(3) (2004), 10271158.CrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., On Heegaard Floer homology and Seifert fibered surgeries, in Proceedings of the Casson Fest, Geometry & Topology Monographs, Volume 7, pp. 181203 (Geom. Topol. Publ., Coventry, 2004).Google Scholar
Ozsváth, P. and Szabó, Z., On knot Floer homology and lens space surgeries, Topology 44(6) (2005), 12811300.CrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202(2) (2006), 326400.CrossRefGoogle Scholar
Ozsváth, P. and Szabó, Z., Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8(1) (2008), 101153.CrossRefGoogle Scholar
Rasmussen, J. A., Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, PhD thesis, Harvard University (2003).Google Scholar
Stoffregen, M., Manolescu invariants of connected sums, Proc. Lond. Math. Soc. (3) 115(5) (2017), 10721117.CrossRefGoogle Scholar
Stoffregen, M., Pin(2)-equivariant Seiberg–Witten Floer homology of Seifert fibrations, Preprint, 2015, arXiv:1505.03234.Google Scholar
Zemke, I., Graph cobordisms and Heegaard Floer homology, Preprint, 2015, arXiv:1512.01184.Google Scholar