Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T21:32:07.409Z Has data issue: false hasContentIssue false

GYSIN TRIANGLES IN THE CATEGORY OF MOTIFS WITH MODULUS

Published online by Cambridge University Press:  06 January 2022

Abstract

In this article, we study a Gysin triangle in the category of motives with modulus (Theorem 1.2). We can understand this Gysin triangle as a motivic lift of the Gysin triangle of log-crystalline cohomology due to Nakkajima and Shiho. After that we compare motives with modulus and Voevodsky motives (Corollary 1.6). The corollary implies that an object in $\operatorname {\mathbf {MDM}^{\operatorname {eff}}}$ decomposes into a p-torsion part and a Voevodsky motive part. We can understand the corollary as a motivic analogue of the relationship between rigid cohomology and log-crystalline cohomology.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artin, M., Grothendieck, A. and Verdier, J.-L., Théorie de Topos et Cohomologie Étale des Schémas I, II, III , Vols. 269, 270, 305 of Lecture Notes in Mathematics (Springer, Berlin, New York, 1971).Google Scholar
Ayoub, J., La réalisation étale et les opérations de Grothendieck, Ann. Sci. Éc. Norm. Supér. (4) 47(1) (2014), 1145.CrossRefGoogle Scholar
Besser, A., Syntomic regulators and $p$ -adic integration. I. Rigid syntomic regulators. Israel J. Math. 120(part B) (2000), 291334.CrossRefGoogle Scholar
Binda, F., Cao, J., Kai, W. and Sugiyama, R., Torsion and divisibility for reciprocity sheaves and 0-cycles with modulus, J. Algebra 469 (2017), 437463.CrossRefGoogle Scholar
Binda, F. and Merici, A., Connectivity and purity for logarithmic motives, Preprint, 2020, arXiv:2012.08361.Google Scholar
Binda, F., Park, D. and Østvær, P. A., Triangulated categories of logarithmic motives over a field, Preprint, 2020, arXiv:2004.12298.Google Scholar
Binda, F. and Saito, S., Semi-purity for cycles with modulus, Preprint, 2018, arXiv:1812.01878.Google Scholar
Binda, F. and Saito, S., Relative cycles with moduli and regulator maps, J. Inst. Math. Jussieu 18(6) (2019), 12331293.CrossRefGoogle Scholar
Bloch, S. and Esnault, H., The additive dilogarithm, (2003), 131155. Kazuya Kato’s fiftieth birthday.CrossRefGoogle Scholar
Chiarellotto, B. and Tsuzuki, N., Cohomological descent of rigid cohomology for étale coverings, Rend. Sem. Mat. Univ. Padova 109 (2003), 63215.Google Scholar
Fulton, W., Intersection theory, Vol. 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 2nd ed. (Springer, Berlin, 1998).CrossRefGoogle Scholar
Kahn, B., Miyazaki, H., Saito, S. and Yamazaki, T., Motives with modulus, I: Modulus sheaves with transfers for non-proper modulus pairs, Preprint, 2019, arXiv:1908.02975.Google Scholar
Kahn, B., Miyazaki, H., Saito, S. and Yamazaki, T., Motives with modulus, II: Modulus sheaves with transfers for proper modulus pairs, Preprint, 2019, arXiv:1910.14534.Google Scholar
Kahn, B., Miyazaki, H., Saito, S. and Yamazaki, T., Motives with modulus, III: The categories of motives, Preprint, 2020, arXiv:2011.11859.Google Scholar
Kahn, B., Saito, S. and Yamazaki, T., Reciprocity sheaves. Compos. Math. 152(9) (2016), 1851--1898. With two appendices by Kay RŁulling.CrossRefGoogle Scholar
Kahn, B., Saito, S. and Yamazaki, T., Reciprocity sheaves, II, Preprint, 2017, arXiv:1707.07398.Google Scholar
Kelly, S. and Saito, S., Smooth blowup square for motives with modulus, Preprint, 2019, arXiv:1907.12759.Google Scholar
Koizumi, J., private communication.Google Scholar
Milne, J. S. and Ramachandran, Niranjan, Motivic complexes over finite fields and the ring of correspondences at the generic point, Pure Appl. Math. Q. 5(4) (2009), 12191252. Special Issue: In honor of John Tate. Part 1.CrossRefGoogle Scholar
Miyazaki, H., Cube invariance of higher Chow groups with modulus, J. Algebraic Geom. 28(2) (2019), 339390.CrossRefGoogle Scholar
Nakkajima, Y. and Shiho, A., Weight Filtrations on Log Crystalline Cohomologies of Families of Open Smooth Varieties, Vol. 1959 of Lecture Notes in Mathematics (Springer, Berlin, 2008).CrossRefGoogle Scholar
Shiho, A., Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9(1) (2002), 1163.Google Scholar
Suslin, A. and Voevodsky, V., Bloch-Kato conjecture and motivic cohomology with finite coefficients, in The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), Vol. 548 of NATO Sci. Ser. C Math. Phys. Sci. (Kluwer Acad. Publ., Dordrecht, 2000), 117189.Google Scholar
Voevodsky, V., Cohomological theory of presheaves with transfers, Vol. 143 of Ann. of Math. Stud. (Princeton Univ. Press, Princeton, NJ, 2000), 87137.Google Scholar
Voevodsky, V., Cohomological theory of presheaves with transfers, in Cycles, Transfers, and Motivic Homology Theories, Vol. 143 of Ann. of Math. Stud. (Princeton Univ. Press, Princeton, NJ, 2000), 87137.Google Scholar
Voevodsky, V., Triangulated categories of motives over a field, in Cycles, Transfers, and Motivic Homology Theories, Vol. 143 of Ann. of Math. Stud. (Princeton Univ. Press, Princeton, NJ, 2000), 188238.Google Scholar