Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T02:34:52.002Z Has data issue: false hasContentIssue false

GENERALISED DIVISOR SUMS OF BINARY FORMS OVER NUMBER FIELDS

Published online by Cambridge University Press:  16 November 2017

Christopher Frei
Affiliation:
University of Manchester, School of Mathematics, Oxford Road, Manchester, M13 9PL, UK (christopher.frei@manchester.ac.uk)
Efthymios Sofos
Affiliation:
Max Planck Institute for Mathematics, Vivatsgasse 7, Bonn, 53111, Germany (sofos@mpim-bonn.mpg.de)

Abstract

Estimating averages of Dirichlet convolutions $1\ast \unicode[STIX]{x1D712}$, for some real Dirichlet character $\unicode[STIX]{x1D712}$ of fixed modulus, over the sparse set of values of binary forms defined over $\mathbb{Z}$ has been the focus of extensive investigations in recent years, with spectacular applications to Manin’s conjecture for Châtelet surfaces. We introduce a far-reaching generalisation of this problem, in particular replacing $\unicode[STIX]{x1D712}$ by Jacobi symbols with both arguments having varying size, possibly tending to infinity. The main results of this paper provide asymptotic estimates and lower bounds of the expected order of magnitude for the corresponding averages. All of this is performed over arbitrary number fields by adapting a technique of Daniel specific to $1\ast 1$. This is the first time that divisor sums over values of binary forms are asymptotically evaluated over any number field other than $\mathbb{Q}$. Our work is a key step in the proof, given in subsequent work, of the lower bound predicted by Manin’s conjecture for all del Pezzo surfaces over all number fields, under mild assumptions on the Picard number.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brüdern, J., Daniel’s twists of Hooley’s delta function, in Contributions in Analytic and Algebraic Number Theory, Springer Proc. Math., Volume 9, pp. 3182 (Springer, New York, 2012).Google Scholar
Barroero, F. and Widmer, M., Counting lattice points and o-minimal structures, Int. Math. Res. Not. IMRN 2014(18) (2014), 49324957.Google Scholar
Daniel, S., On the divisor-sum problem for binary forms, J. Reine Angew. Math. 507 (1999), 107129.Google Scholar
Destagnol, K., La conjecture de Manin pour certaines surfaces de Châtelet, Acta Arith. 174(1) (2016), 3197.Google Scholar
Duke, W., Friedlander, J. B. and Iwaniec, H., A quadratic divisor problem, Invent. Math. 115(2) (1994), 209217.Google Scholar
de la Bretèche, R. and Browning, T. D., Sums of arithmetic functions over values of binary forms, Acta Arith. 125(3) (2006), 291304.Google Scholar
de la Bretèche, R. and Browning, T. D., Binary linear forms as sums of two squares, Compos. Math. 144(6) (2008), 13751402.Google Scholar
de la Bretèche, R. and Browning, T. D., Le problème des diviseurs pour des formes binaires de degré 4, J. Reine Angew. Math. 646 (2010), 144.Google Scholar
de la Bretèche, R. and Browning, T. D., Manin’s conjecture for quartic del Pezzo surfaces with a conic fibration, Duke Math. J. 160(1) (2011), 169.Google Scholar
de la Bretèche, R. and Browning, T. D., Binary forms as sums of two squares and Châtelet surfaces, Israel J. Math. 191(2) (2012), 9731012.Google Scholar
de la Bretèche, R. and Tenenbaum, G., Oscillations localisées sur les diviseurs, J. Lond. Math. Soc. (2) 85(3) (2012), 669693.Google Scholar
de la Bretèche, R. and Tenenbaum, G., Sur la conjecture de Manin pour certaines surfaces de Châtelet, J. Inst. Math. Jussieu 12(4) (2013), 759819.Google Scholar
Fouvry, É., Kowalski, E. and Michel, P., On the exponent of distribution of the ternary divisor function, Mathematika 61(1) (2015), 121144.Google Scholar
Franke, J., Manin, Y. I. and Tschinkel, Y., Rational points of bounded height on Fano varieties, Invent. Math. 95(2) (1989), 421435.Google Scholar
Frei, C., Counting rational points over number fields on a singular cubic surface, Algebra Number Theory 7(6) (2013), 14511479.Google Scholar
Frei, C., Loughran, D. and Sofos, E., Rational points of bounded height on general conic bundle surfaces, preprint, 2016, arXiv:1609.04330.Google Scholar
Frei, C. and Sofos, E., Counting rational points on smooth cubic surfaces, Math. Res. Lett. 23 (2016), 127143.Google Scholar
Greaves, G., On the divisor-sum problem for binary cubic forms, Acta Arith. 17 (1970), 128.Google Scholar
Heath-Brown, D. R., Linear relations amongst sums of two squares, in Number Theory and Algebraic Geometry, London Mathematical Society Lecture Note Series, Volume 303, pp. 133176 (Cambridge University Press, Cambridge, 2003).Google Scholar
Hooley, C., On the number of divisors of a quadratic polynomial, Acta Math. 110 (1963), 97114.Google Scholar
Hooley, C., On a new technique and its applications to the theory of numbers, Proc. Lond. Math. Soc. (3) 38(1) (1979), 115151.Google Scholar
Irving, A. J., The divisor function in arithmetic progressions to smooth moduli, Int. Math. Res. Not. IMRN (15) (2015), 66756698.Google Scholar
Kollár, J and Mella, M., Quadratic families of elliptic curves and unirationality of degree 1 conic bundles, Amer. J. Math. 139(4) (2017), 915936.Google Scholar
Matthiesen, L., Correlations of the divisor function, Proc. Lond. Math. Soc. (3) 104(4) (2012), 827858.Google Scholar
Matthiesen, L., Linear correlations amongst numbers represented by positive definite binary quadratic forms, Acta Arith. 154(3) (2012), 235306.Google Scholar
Matthiesen, L., Correlations of representation functions of binary quadratic forms, Acta Arith. 158(3) (2013), 245252.Google Scholar
Moreno, C. J., Advanced analytic number theory: L-functions, in Mathematical Surveys and Monographs, Volume 115 (American Mathematical Society, Providence, RI, 2005).Google Scholar
Masser, D. and Vaaler, J. D., Counting algebraic numbers with large height II, Trans. Amer. Math. Soc. 359(1) (2007), 427445 (electronic).Google Scholar
Montgomery, H. L. and Vaughan, R. C., Multiplicative Number Theory. I. Classical Theory, vol. 97 (Cambridge University Press, Cambridge, 2007).Google Scholar
Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, second ed (The Clarendon Press, Oxford University Press, New York, 1986). Edited and with a preface by D. R. Heath-Brown.Google Scholar
Tolev, D. I., On the remainder term in the circle problem in an arithmetic progression, Tr. Mat. Inst. Steklova 276 (2012), 266279.Google Scholar
Wilkie, A. J., o-minimal structures, Astérisque 326 (2009), Exp. No. 985, vii, 131–142 (2010), Séminaire Bourbaki. Vol. 2007/2008.Google Scholar