Published online by Cambridge University Press: 08 November 2019
Let $F$ be a non-archimedean local field of residual characteristic
$p$,
$\ell \neq p$ be a prime number, and
$\text{W}_{F}$ the Weil group of
$F$. We classify equivalence classes of
$\text{W}_{F}$-semisimple Deligne
$\ell$-modular representations of
$\text{W}_{F}$ in terms of irreducible
$\ell$-modular representations of
$\text{W}_{F}$, and extend constructions of Artin–Deligne local constants to this setting. Finally, we define a variant of the
$\ell$-modular local Langlands correspondence which satisfies a preservation of local constants statement for pairs of generic representations.