Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T22:11:48.408Z Has data issue: false hasContentIssue false

Estimating the dynamic role of attention via random utility

Published online by Cambridge University Press:  17 January 2025

Stephanie M. Smith
Affiliation:
Department of Psychology, The Ohio State University, Columbus, USA
Ian Krajbich*
Affiliation:
Department of Psychology, The Ohio State University, Columbus, USA Department of Economics, The Ohio State University, Columbus, USA
Ryan Webb
Affiliation:
Rotman School of Management, University of Toronto, Toronto, Canada

Abstract

When making decisions, people tend to look back and forth between the alternatives until they eventually make a choice. Eye-tracking research has established that these shifts in attention are strongly linked to choice outcomes. A predominant framework for understanding the dynamics of the choice process, and thus the effects of attention, is sequential sampling of information. However, existing methods for estimating the attention parameters in these models are computationally costly and overly flexible, and yield estimates with unknown precision and bias. Here we propose an estimation method that relies on a link between sequential sampling models and random utility models (RUM). This method uses familiar econometric tools (i.e., logistic regression) and yields estimates that appear to be unbiased and relatively precise compared to existing methods, in a small fraction of the computation time. The RUM thus appears to be a useful tool for estimating the effects of attention on choice.

Type
Original Paper
Copyright
Copyright © Economic Science Association 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amasino, D. R., Sullivan, N. J., Kranton, R. E., Huettel, S. A. (2019). Amount and time exert independent influences on intertemporal choice. Nature Human Behaviour, 10.1038/s41562-019-0537-2CrossRefGoogle Scholar
Arieli, A., Ben-Ami, Y., Rubinstein, A. (2011). Tracking decision makers under uncertainty. American Economic Journal: Microeconomics, 3(4), 6876.Google Scholar
Armel, K. C., Beaumel, A., Rangel, A. (2008). Biasing simple choices by manipulating relative visual attention. Judgment and Decision Making, 3(5), 396403.CrossRefGoogle Scholar
Ashby, N. J. S., Jekel, M., Dickert, S., Glöckner, A. (2016). Finding the right fit: A comparison of process assumptions underlying popular drift-diffusion models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10.1037/xlm0000279Google Scholar
Bagdziunaite, D., Nassri, K., Clement, J., Ramsøy, T. Z. (2014). An added value of neuroscientific tools to understand consumers’ in-store behaviour. In EMAC 2014.Google Scholar
Bergstra, J., Bengio, Y. (2012). Random search for hyper-parameter optimization. The Journal of Machine Learning Research, 13(1), 281305.Google Scholar
Cavanagh, J. F., Wiecki, T. V., Kochar, A., Frank, M. J. (2014). Eye tracking and pupillometry are indicators of dissociable latent decision processes. Journal of Experimental Psychology: General, 143(4), 14761488. 10.1037/a0035813CrossRefGoogle ScholarPubMed
Chen, W. J., Krajbich, I. (2017). Computational modeling of epiphany learning. Proceedings of the National Academy of Sciences, 114(18), 46374642. 10.1073/pnas.1618161114CrossRefGoogle ScholarPubMed
Chiong, K., Shum, M., Webb, R., Chen, R. (2018). Split-second decision-making in the field: Response times in mobile advertising. SSRN Working Paper.CrossRefGoogle Scholar
Devetag, G., Di Guida, S., Polonio, L. (2016). An eye-tracking study of feature-based choice in one-shot games. Experimental Economics, 19(1), 177201. 10.1007/s10683-015-9432-5CrossRefGoogle Scholar
Echenique, F., Saito, K. (2017). Response time and utility. Journal of Economic Behavior & Organization, 139, 4959. 10.1016/j.jebo.2017.04.008CrossRefGoogle Scholar
Fehr, E., Rangel, A. (2011). Neuroeconomic foundations of economic choice—Recent advances. The Journal of Economic Perspectives, 25(4), 330. 10.1257/jep.25.4.3CrossRefGoogle Scholar
Fisher, G. (2017). An attentional drift diffusion model over binary-attribute choice. Cognition, 168, 3445. 10.1016/j.cognition.2017.06.007CrossRefGoogle ScholarPubMed
Fudenberg, D., Strack, P., Strzalecki, T. (2018). Speed, accuracy, and the optimal timing of choices. American Economic Review, 108(12), 36513684. 10.1257/aer.20150742CrossRefGoogle Scholar
Gabaix, X. (2017). Behavioral Inattention (No. w24096), Cambridge, MA: National Bureau of Economic Research 10.3386/w24096CrossRefGoogle Scholar
Gossner, C., Steiner, J., Stewart, C. (2018). Attention Please!*, 34. Working paper, University of Toronto Department of Economics.Google Scholar
Harwood, T., Jones, M., Horsley, M., Eliot, M., Knight, B. A., Reilly, R. (2014). Mobile eye-tracking in retail research Current trends in eye tracking research, Cham: Springer 183199. 10.1007/978-3-319-02868-2_14CrossRefGoogle Scholar
Knoepfle, D. T., Tao-yi Wang, J., Camerer, C. F. (2009). Studying learning in games using eye-tracking. Journal of the European Economic Association, 7(2–3), 388398. 10.1162/JEEA.2009.7.2-3.388CrossRefGoogle Scholar
Konovalov, A., Krajbich, I. (2016). Gaze data reveal distinct choice processes underlying model-based and model-free reinforcement learning. Nature Communications, 7, 12438 10.1038/ncomms12438CrossRefGoogle ScholarPubMed
Krajbich, I., Armel, C., Rangel, A. (2010). Visual fixations and the computation and comparison of value in simple choice. Nature Neuroscience, 13(10), 12921298. 10.1038/nn.2635CrossRefGoogle ScholarPubMed
Krajbich, I., Lu, D., Camerer, C., Rangel, A. (2012). The attentional drift-diffusion model extends to simple purchasing decisions. Frontiers in Psychology, 3. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374478/.CrossRefGoogle ScholarPubMed
Krajbich, I., Oud, B., Fehr, E. (2014). Benefits of neuroeconomic modeling: New policy interventions and predictors of preference. The American Economic Review, 104(5), 501506. 10.1257/aer.104.5.501CrossRefGoogle Scholar
Krajbich, I., Rangel, A. (2011). Multialternative drift-diffusion model predicts the relationship between visual fixations and choice in value-based decisions. Proceedings of the National Academy of Sciences, 108(33), 1385213857. 10.1073/pnas.1101328108CrossRefGoogle ScholarPubMed
Lahey, J. N., Oxley, D. (2016). The power of eye tracking in economics experiments. American Economic Review, 106(5), 309313. 10.1257/aer.p20161009CrossRefGoogle Scholar
Pärnamets, P., Johansson, P., Hall, L., Balkenius, C., Spivey, M. J., Richardson, D. C. (2015). Biasing moral decisions by exploiting the dynamics of eye gaze. Proceedings of the National Academy of Sciences, 112(13), 41704175. 10.1073/pnas.1415250112CrossRefGoogle ScholarPubMed
Polonio, L., Di Guida, S., Coricelli, G. (2015). Strategic sophistication and attention in games: An eye-tracking study. Games and Economic Behavior, 94, 8096. 10.1016/j.geb.2015.09.003CrossRefGoogle Scholar
Reutskaja, E., Nagel, R., Camerer, C. F., Rangel, A. (2011). Search dynamics in consumer choice under time pressure: An eye-tracking study. American Economic Review, 101(2), 900926. 10.1257/aer.101.2.900CrossRefGoogle Scholar
Shi, S. W., Wedel, M., Pieters, F. G. M. (2013). Information acquisition during online decision making: A model-based exploration using eye-tracking data. Management Science, 59(5), 10091026. 10.1287/mnsc.1120.1625CrossRefGoogle Scholar
Sims, C. A. (2003). Implications of rational inattention. Journal of Monetary Economics, 50(3), 665690. 10.1016/S0304-3932(03)00029-1CrossRefGoogle Scholar
Smith, S. M., Krajbich, I. (2018). Attention and choice across domains. Journal of Experimental Psychology: General, 10.1037/xge0000482CrossRefGoogle Scholar
Smith, S. M., Krajbich, I. (2019). Gaze amplifies value in decision making. Psychological Science, 30(1), 116128. 10.1177/0956797618810521CrossRefGoogle ScholarPubMed
Stewart, N., Hermens, F., Matthews, W. J. (2015). Eye movements in risky choice. Journal of Behavioral Decision Making. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/bdm.1854/full.Google Scholar
Towal, R. B., Mormann, M., Koch, C. (2013). Simultaneous modeling of visual saliency and value computation improves predictions of economic choice. Proceedings of the National Academy of Sciences, 110(40), E3858E3867. 10.1073/pnas.1304429110CrossRefGoogle ScholarPubMed
Vaidya, A. R., Fellows, L. K. (2015). Testing necessary regional frontal contributions to value assessment and fixation-based updating. Nature Communications, 6, 10120 10.1038/ncomms10120CrossRefGoogle ScholarPubMed
Wang, J. T., Spezio, M., Camerer, C. F. (2010). Pinocchio’s pupil: Using eye tracking and pupil dilation to understand truth telling and deception in sender-receiver games. American Economic Review, 100(3), 9841007. 10.1257/aer.100.3.984CrossRefGoogle Scholar
Webb, R. (2019). The (neural) dynamics of stochastic choice. Management Science, 65(1), 230255. 10.1287/mnsc.2017.2931CrossRefGoogle Scholar
Woodford, M. (2014). Stochastic choice: An optimizing neuroeconomic model. The American Economic Review, 104(5), 495500. 10.1257/aer.104.5.495CrossRefGoogle Scholar