Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T08:53:44.319Z Has data issue: false hasContentIssue false

$\wedge$-TRANSITIVE DIGRAPHS PRESERVING A CARTESIAN DECOMPOSITION

Published online by Cambridge University Press:  31 March 2015

JOY MORRIS*
Affiliation:
Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4 email joy.morris@uleth.ca
PABLO SPIGA
Affiliation:
Dipartimento di Matematica Pura e Applicata, University of Milano-Bicocca, Via Cozzi 53, 20126 Milano, Italy email pablo.spiga@unimib.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we combine group-theoretic and combinatorial techniques to study $\wedge$-transitive digraphs admitting a cartesian decomposition of their vertex set. In particular, our approach uncovers a new family of digraphs that may be of considerable interest.

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Berggren, J. L., ‘An algebraic characterization of finite symmetric tournaments’, Bull. Aust. Math. Soc. 6 (1972), 5359.CrossRefGoogle Scholar
Cameron, P. J., ‘Proofs of some theorems of W. A. Manning’, Bull. Lond. Math. Soc. 1 (1969), 349352.CrossRefGoogle Scholar
Cameron, P. J., ‘Bounding the rank of certain permutation groups’, Math. Z. 124 (1972), 343352.CrossRefGoogle Scholar
Cameron, P. J., ‘Permutation groups with multiply transitive suborbits’, Proc. Lond. Math. Soc. (3) 25 (1972), 427440.CrossRefGoogle Scholar
Cameron, P. J., Permutation Groups, London Mathematical Society, Student Texts, 45 (Cambridge University Press, Cambridge, 1999).CrossRefGoogle Scholar
Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups (Clarendon Press, Oxford, 1985).Google Scholar
Dixon, J. D. and Mortimer, B., Permutation Groups, Graduate Texts in Mathematics, 163 (Springer, New York, 1996).CrossRefGoogle Scholar
Giudici, M., Li, C. H. and Praeger, C. E., ‘Analysing finite locally s-arc transitive graphs’, Trans. Amer. Math. Soc. 356 (2004), 291317.CrossRefGoogle Scholar
Gorenstein, D. and Walter, J. H., ‘The characterization of finite groups with dihedral Sylow 2-subgroups’, J. Algebra 2 (1965), 85151, 218–270, 354–393.CrossRefGoogle Scholar
Li, C. H. and Seress, Á., ‘Constructions of quasiprimitive two-arc-transitive graphs of product action type’, in: Finite Geometries, Groups, and Computation (Walter de Gruyter, Berlin, 2006), 115123.CrossRefGoogle Scholar
Morris, J., Praeger, C. E. and Spiga, P., ‘Strongly regular edge-transitive graphs’, Ars Math. Contemp. 2 (2009), 137155.CrossRefGoogle Scholar
Morris, J. and Spiga, P., ‘$2$-distance-transitive digraphs preserving a cartesian decomposition’, Preprint, 2012, arXiv:1203.6386v1.Google Scholar
Praeger, C. E., ‘Imprimitive symmetric graphs’, Ars Combin. 19A (1985), 149163.Google Scholar
Praeger, C. E., Saxl, J. and Yokoyama, K., ‘Distance transitive graphs and finite simple groups’, Proc. Lond. Math. Soc. (3) 55 (1987), 121.CrossRefGoogle Scholar
Praeger, C. E. and Schneider, C., ‘Permutation groups and cartesian decompositions’, in preparation.Google Scholar
Suzuki, M., Group Theory II, Grundlehren der Mathematischen Wissenschaften, 248 (Springer, Berlin).CrossRefGoogle Scholar
van Bon, J., ‘Affine distance-transitive groups’, PhD Thesis, Universiteit Utrecht, 1990.Google Scholar
van Bon, J., ‘Finite primitive distance-transitive graphs’, European J. Combin. 28 (2007), 517532.CrossRefGoogle Scholar
Walter, J. H., ‘The characterization of finite groups with Abelian Sylow 2-subgroups’, Ann. of Math. (2) 89 (1969), 405514.CrossRefGoogle Scholar
Wielandt, H., Finite Permutation Groups (Academic Press, New York, 1964).Google Scholar