Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T12:43:16.578Z Has data issue: false hasContentIssue false

Some regularity estimates for convolution semigroups on a group of polynomial growth

Published online by Cambridge University Press:  09 April 2009

Nick Dungey
Affiliation:
School of Mathematics, University fo New South Wales, Sydney 2052, Australia e-mail: dungey@maths.unsw.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study a convolution semigroup satisfying Gaussian estimates on a group G of polynomial volume growth. If Q is a subgroup satisfying a certain geometric condition, we obtain high order regularity estimates for the semigroup in the direction of Q. Applications to heat kernels and convolution powers are given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Alexopoulos, G., ‘An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth’, Canad. J. Math. 44 (1992), 691727.CrossRefGoogle Scholar
[2]Alexopoulos, G., ‘Random walks on discrete groups of polynomial volume growth’, Ann. Probab. 30 (2002), 723801.CrossRefGoogle Scholar
[3]Alexopoulos, G., ‘Sub-Laplacians with drift on Lie groups of polynomial volume growth’, Mem. Amer. Math. Soc. 155 (2002), number 739.Google Scholar
[4]Bass, H., ‘The degree of polynomial growth of finitely generated nilpotent groups’, Proc. London Math. Soc. 25 (1972), 603614.Google Scholar
[5]Baumslag, G., Lecture notes on nilpotent groups, CBMS Regional Conference Series in Mathematics No. 2 (Amer. Math. Soc., Providence, R.I., 1971).Google Scholar
[6]Butzer, P. L. and Berens, H., Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften Band 145 (Springer, New York, 1967).CrossRefGoogle Scholar
[7]Dungey, N., ‘High order regularity for subelliptic operators on Lie groups of polynomial growth’, Rev. Math. Iberoamericana, to appear.Google Scholar
[8]Dungey, N., ter Elst, A. F. M. and Robinson, D. W., Analysis on Lie groups with polynomial growth, Progress in Mathematics 214 (Birkhäuser, Boston, MA, 2003).Google Scholar
[9]Duong, X. T. and Robinson, D. W., ‘Semigroup kernels, Poisson bounds, and holomorphic functional calculus’, J. Funct. Anal. 142 (1996), 89129.Google Scholar
[10]ter Elst, A. F. M., ‘Derivatives of kernels associated to complex subelliptic operators’, Bull. Austral. Math. Soc. 67 (2003), 393406.Google Scholar
[11]ter Elst, A. F. M. and Robinson, D. W., ‘Weighted subcoercive operators on Lie groups’, J. Funct. Anal. 157 (1998), 88163.CrossRefGoogle Scholar
[12]ter Elst, A. F. M. and Robinson, D. W., ‘Gaussian bounds for complex subelliptic operators on Lie groups of polynomial growth’, Bull. Austral. Math. Soc. 67 (2003), 201218.CrossRefGoogle Scholar
[13]ter Elst, A. F. M., Robinson, D. W. and Sikora, A., ‘Riesz transforms and Lie groups of polynomial growth’, J. Funct. Anal. 162 (1999), 1451.CrossRefGoogle Scholar
[14]Gromov, M., ‘Groups of polynomial growth and expanding maps’, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 5378.CrossRefGoogle Scholar
[15]Hebisch, W. and Saloff-Coste, L., ‘Gaussian estimates for Markov chains and random walks on groups’, Ann. Probab. 21 (1993), 673709.CrossRefGoogle Scholar
[16]Raghunathan, M. S., Discrete subgroups of Lie groups (Springer, New York, 1972).Google Scholar
[17]Robinson, D. W., Elliptic operators and Lie groups, Oxford Math. Monographs (Clarendon Press, Oxford, 1991).Google Scholar
[18]Saloff-Coste, L., ‘Analyse sur les groupes de Lie à croissance polynômiale’, Ark. Mat. 28 (1990), 315331.Google Scholar
[19]Varopoulos, N. T., ‘Analysis on nilpotent groups’, J. Funct. Anal. 66 (1986), 406431.Google Scholar
[20]Varopoulos, N. T., ‘Analysis on Lie groups’, J. Funct. Anal. 76 (1988), 346410.CrossRefGoogle Scholar
[21]Varopoulos, N. T., Saloff-Coste, L. and Coulhon, T., Analysis and geometry on groups, Cambridge Tracts in Math. 100 (Cambridge University Press, Cambridge, 1992).Google Scholar