No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
We employ the Dyson's Lemma of Esnault and Viehweg to obtain a new and sharp formulation of Roth's Theorem on the approximation of algebraic numbers by algebraic numbers and apply our arguments to yield a refinement of the Davenport-Roth result on the number of exceptions to Roth's inequality and a sharpening of the Cugiani-Mahler theorem. We improve on the order of magnitude of the results rather than just on the constants involved.