Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T00:59:21.471Z Has data issue: false hasContentIssue false

SOME INDEX FORMULAE ON THE MODULI SPACE OF STABLE PARABOLIC VECTOR BUNDLES

Published online by Cambridge University Press:  28 February 2013

PIERRE ALBIN
Affiliation:
Department of Mathematics, University of Illinois at Urbana-Champaign, USA email palbin@illinois.edu
FRÉDÉRIC ROCHON*
Affiliation:
Department of Mathematics, Australian National University, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study natural families of $\bar {\partial } $-operators on the moduli space of stable parabolic vector bundles. Applying a families index theorem for hyperbolic cusp operators from our previous work, we find formulae for the Chern characters of the associated index bundles. The contributions from the cusps are explicitly expressed in terms of the Chern characters of natural vector bundles related to the parabolic structure. We show that our result implies formulae for the Chern classes of the associated determinant bundles consistent with a result of Takhtajan and Zograf.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Albin, P. and Rochon, F., ‘Family index for manifolds with hyperbolic cusp singularities’, Int. Math. Res. Not. IMRN (4) (2009), 625697.Google Scholar
Albin, P. and Rochon, F., ‘A local families index formula for $\bar {\partial } $-operators on punctured Riemann surfaces’, Comm. Math. Phys. 289 (2009), 483527.CrossRefGoogle Scholar
Ammann, B., Lauter, R. and Nistor, V., ‘Pseudodifferential operators on manifolds with Lie structure at infinity’, Ann. of Math. (2) 165 (2007), 717747.CrossRefGoogle Scholar
Atiyah, M. F. and Bott, R., ‘The index theorem for manifolds with boundary’, Proc. Sympos. Differential Anal. (1964), 175186.Google Scholar
Atiyah, M., Patodi, V. K. and Singer, I. M., ‘Spectral asymmetry and Riemannian geometry I’, Math. Proc. Cambridge Philos. Soc. 77 (1975), 4369.CrossRefGoogle Scholar
Berline, N., Getzler, E. and Vergne, M., Heat Kernels and Dirac Operators (Springer, Berlin, 1992).CrossRefGoogle Scholar
Biquard, O., ‘Fibrés paraboliques stables et connexions singulières plates’, Bull. Soc. Math. France (2) (1991), 231257.CrossRefGoogle Scholar
Bismut, J. M. and Cheeger, J., ‘$\eta $-invariants and their adiabatic limits’, J. Amer. Math. Soc. (2) 2 (1) (1989), 3370.Google Scholar
Bismut, J. M. and Freed, D. S., ‘The analysis of elliptic families. I. Metric and connections on the determinant bundles’, Comm. Math. Phys. 106 (1986), 159176.CrossRefGoogle Scholar
Biswas, I. and Raghavendra, N., ‘Determinants of parabolic bundles on Riemann surfaces’, Proc. Indian Acad. Sci. Math. Sci. 103 (1993), 4171.CrossRefGoogle Scholar
Boden, H. U. and Hu, Y., ‘Variations of moduli of parabolic bundles’, Math. Ann. 301 (1995), 539559.CrossRefGoogle Scholar
Boden, H. U. and Yokogawa, K., ‘Rationality of moduli spaces of parabolic bundles’, J. Lond. Math. Soc. 59 (1999), 461478.CrossRefGoogle Scholar
Borthwick, D., Judge, C. and Perry, P. A., ‘Selberg’s zeta function and the spectral geometry of geometrically finite hyperbolic surfaces’, Comment. Math. Helv. 80 (3) (2005), 483515.CrossRefGoogle Scholar
Donaldson, S. K., ‘A new proof of a theorem of Narasimhan and Seshadri’, J. Differential Geom. 18 (1983), 269277.CrossRefGoogle Scholar
Efrat, I., ‘Determinants of Laplacians on surfaces of finite volume’, Commun. Math. Phys. 119 (1988), 443451.CrossRefGoogle Scholar
Efrat, I., ‘Determinants of Laplacians on surfaces of finite volume’, Commun. Math. Phys. 138 (1991), 607 (erratum).CrossRefGoogle Scholar
Epstein, C., Melrose, R. B. and Mendoza, G., ‘Resolvent of the Laplacian on strictly pseudoconvex domains’, Acta Math. 167 (1–2) (1991), 1106.CrossRefGoogle Scholar
Friedman, J., ‘Regularized determinants of the Laplacian for cofinite Kleinian group with finite-dimensional unitary representations’, Comm. Math. Phys. 275 (3) (2007), 659684.CrossRefGoogle Scholar
Grieser, D., ‘Basics of the $b$-calculus’, in: Approaches to Singular Analysis (Berlin, 1999), Operator Theory: Advances and Applications, 125 (Birkhäuser, Basel, 2001), 3084.CrossRefGoogle Scholar
Hassell, A., Mazzeo, R. and Melrose, R. B., ‘Analytic surgery and the accumulation of eigenvalues’, Comm. Anal. Geom. 3 (1–2) (1995), 115222.CrossRefGoogle Scholar
Mazzeo, R., ‘Elliptic theory of differential edge operators I’, Comm. Partial Differential Equations 16 (1991), 16151664.Google Scholar
Mazzeo, R. and Melrose, R. B., ‘Meromorphic extension of the resolvent on complete spaces with with asymptotically negative curvature’, J. Funct. Anal. (1987), 260310.CrossRefGoogle Scholar
Mazzeo, R. and Melrose, R. B., ‘Pseudodifferential operators on manifolds with fibred boundaries’, Asian J. Math. 2 (4) (1998), 833866.CrossRefGoogle Scholar
Mehta, V. B. and Seshadri, C. S., ‘Moduli of vector bundles on curves with parabolic structures’, Math. Ann. 248 (1980), 205239.CrossRefGoogle Scholar
Melrose, R. B., ‘Pseudodifferential operators, corners and singular limits’, in: Proc. Internat. Congress of Mathematicians, Kyoto, August 1990, Math. Society of Japan, Tokyo (Springer, New York, 1990).Google Scholar
Melrose, R. B., ‘Calculus of conormal distributions on manifolds with corners’, Int. Math. Res. Not. IMRN 3 (1992), 5161.CrossRefGoogle Scholar
Melrose, R. B., The Atiyah–Patodi–Singer Index Theorem (A.K. Peters, Wellesley, MA, 1993).CrossRefGoogle Scholar
Melrose, R. B., Geometric Scattering Theory (Cambridge University Press, Cambridge, 1995).Google Scholar
Melrose, R. B. and Mendoza, G., ‘Elliptic pseudodifferential operators of totally characteristic type’, MSRI Preprint.Google Scholar
Melrose, R. B. and Piazza, P., ‘Families of Dirac operators, boundaries and the $b$-calculus’, J. Differential Geom. 46 (1) (1997), 99180; MR99a:58144.CrossRefGoogle Scholar
Müller, W., ‘Spectral geometry and scattering theory for certain complete surfaces of finite volume’, Invent. Math. 109 (1992), 265305.CrossRefGoogle Scholar
Narasimhan, M. S. and Seshadri, C. S., ‘Holomorphic vector bundles on a compact Riemann surface’, Ann. of Math. (2) 82 (2) (1965), 540567.CrossRefGoogle Scholar
Nitsure, N., ‘Cohomology of the moduli space of parabolic vector bundles’, Proc. Indian Acad. Sci. Math. Sci. 95 (1) (1986), 6177.CrossRefGoogle Scholar
Piazza, P., ‘Determinant bundles, manifolds with boundary and surgery’, Comm. Math. Phys. 178 (3) (1996), 597626.CrossRefGoogle Scholar
Quillen, D., ‘Determinants of Cauchy–Riemann operators on Riemann surfaces’, Funct. Anal. Appl. 19 (1) (1985), 3741.CrossRefGoogle Scholar
Sarnak, P., ‘Determinants of Laplacians’, Comm. Math. Phys. 110 (1) (1987), 113120.CrossRefGoogle Scholar
Takhtajan, L. A. and Zograf, P. G., ‘A local index theorem for families of $\bar {\partial } $-operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces’, Comm. Math. Phys. 137 (2) (1991), 399426.CrossRefGoogle Scholar
Takhtajan, L. A. and Zograf, P. G., ‘The first Chern form on the moduli of parabolic bundles’, Math. Ann. 341 (2008), 113135.CrossRefGoogle Scholar
Vaillant, B., ‘Index and spectral theory for manifolds with generalized fibred cusps’, PhD Dissertation, Bonner Mathematische Schriften, 344, Univ. Bonn., Mathematisches Institut, Bonn (2001), available online at arXiv:math/0102072v1.Google Scholar
Zograf, P. G. and Takhtadzhyan, L. A., ‘The geometry of the moduli spaces of vector bundles over a Riemann surface’, Izv. Akad. Nauk SSSR Ser. Mat. 53 (4) (1989), 753770 (in Russian); English translation in Math. USSR Izvestiya 35(1) (1990), 83–100.Google Scholar