Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T13:44:35.786Z Has data issue: false hasContentIssue false

SMALL DOUBLING IN ORDERED GROUPS

Published online by Cambridge University Press:  30 April 2014

GREGORY FREIMAN
Affiliation:
Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel email grisha@post.tau.ac.il
MARCEL HERZOG*
Affiliation:
Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel email herzogm@post.tau.ac.il
PATRIZIA LONGOBARDI
Affiliation:
Dipartimento di Matematica e Informatica, Università di Salerno, via Ponte don Melillo, 84084 Fisciano (Salerno), Italy email plongobardi@unisa.it
MERCEDE MAJ
Affiliation:
Dipartimento di Matematica e Informatica, Università di Salerno, via Ponte don Melillo, 84084 Fisciano (Salerno), Italy email mmaj@unisa.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that if $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}S$ is a finite subset of an ordered group that generates a nonabelian ordered group, then $|S^2|\geq 3|S|-2$. This generalizes a classical result from the theory of set addition.

Type
Research Article
Copyright
Copyright © 2014 Australian Mathematical Publishing Association Inc. 

References

Bilu, Y., ‘Structure of sets with small sumsets’, Asterique 258 (1999), 77108.Google Scholar
Botto Mura, R. and Rhemtulla, A., Orderable Groups, Lecture Notes in Pure and Applied Mathematics (Marcel Dekker Inc., New York, Basel, 1977).Google Scholar
Chang, M., ‘A polynomial bound in Freiman’s theorem’, Duke Math. J. 113 (2002), 399419.Google Scholar
Freiman, G. A., Foundations of a Structural Theory of Set Addition, Translations of Mathematical Monographs, 37 (American Mathematical Society, Providence, Rhode Island, 1973).Google Scholar
Glass, A. M. W., Partially Ordered Groups, Series in Algebra, 7 (World Scientific Publishing Co., Inc., River Edge, NJ, 1999).Google Scholar
Green, B. J. and Ruzsa, I. Z., ‘Freiman’s theorem in an arbitrary abelian group’, J. Lond. Math. Soc. (2) 75 (2007), 163175.Google Scholar
Green, B. J. and Tao, T. C., ‘Freiman’s theorem in finite fields via extremal set theory’, Combin. Probab. Comput. 18 (2009), 335355.Google Scholar
Hamidoune, Y. O., Llado, A. S. and Serra, O., ‘On subsets with small product in torsion-free groups’, Combinatorica 18 (1998), 529540.Google Scholar
Iwasawa, K., ‘On linearly ordered groups’, J. Math. Soc. Japan 1 (1948), 19.Google Scholar
Kargapolov, M. I., ‘Completely orderable groups’, Algebra Logica 1 (1962), 1621.Google Scholar
Levi, F. W., ‘Arithmetische Gesetze im Gebiete diskreter Gruppen’, Rend. Circ. Mat. Palermo (2) 35 (1913), 225236.Google Scholar
Mal’cev, A. I., ‘On ordered groups’, Izv. Akad. Nauk. SSSR Ser. Mat. 13 (1948), 473482.Google Scholar
Neumann, B. H., ‘On ordered groups’, Amer. J. Math. 71 (1949), 118.Google Scholar
Ruzsa, I. Z., ‘Generalized arithmetic progressions and sumsets’, Acta Math. Hungar. 65 (1994), 379388.Google Scholar
Sanders, T., ‘A note on Freiman’s theorem in vector spaces’, Combin. Probab. Comput. 17 (2008), 297305.CrossRefGoogle Scholar
Tao, T. C., ‘Product set estimates for non-commutative groups’, Combinatorica 28 (2008), 547594.Google Scholar