Hostname: page-component-76c49bb84f-lvxqv Total loading time: 0 Render date: 2025-07-03T02:03:35.551Z Has data issue: false hasContentIssue false

REPRESENTATIONS OF REAL BANACH ALGEBRAS

Published online by Cambridge University Press:  12 May 2010

F. ALBIAC*
Affiliation:
Departamento de Matemáticas, Universidad Pública de Navarra, Pamplona 31006, Spain (email: fernando.albiac@unavarra.es)
E. BRIEM
Affiliation:
Science Institute, University of Iceland, 107 Reykjavik, Iceland (email: briem@hi.is)
*
For correspondence; e-mail: fernando.albiac@unavarra.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A commutative complex unital Banach algebra can be represented as a space of continuous complex-valued functions on a compact Hausdorff space via the Gelfand transform. However, in general it is not possible to represent a commutative real unital Banach algebra as a space of continuous real-valued functions on some compact Hausdorff space, and for this to happen some additional conditions are needed. In this note we represent a commutative real Banach algebra on a part of its state space and show connections with representations on the maximal ideal space of the algebra (whose existence one has to prove first).

Information

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

Footnotes

The first-named author acknowledges support from the Spanish Ministerio de Ciencia e Innovación Research Project Operadores, retículos, y geometría de espacios de Banach, reference number MTM2008-02652/MTM.

References

[1]Albiac, F. and Kalton, N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233 (Springer, New York, 2006).Google Scholar
[2]Albiac, F. and Kalton, N. J., ‘A characterization of real 𝒞(K)-spaces’, Amer. Math. Monthly 114(8) (2007), 737743.CrossRefGoogle Scholar
[3]Arens, R., ‘Representation of *-algebras’, Duke Math. J. 14 (1947), 269282.CrossRefGoogle Scholar
[4]Bonsall, F. F. and Duncan, J., Complete Normed Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80 (Springer, New York, 1973).CrossRefGoogle Scholar
[5]Doran, R. S. and Belfi, V. A., Characterizations of C*-Algebras, Monographs and Textbooks in Pure and Applied Mathematics, 101 (Marcel Dekker Inc., New York, 1986).Google Scholar
[6]Gelfand, I. and Neumark, M., ‘On the imbedding of normed rings into the ring of operators in Hilbert space’, Rec. Math. [Mat. Sbornik] N.S. 12(54) (1943), 197213 (English, with Russian summary).Google Scholar
[7]Goodearl, K. R., Notes on Real and Complex C*-Algebras, Shiva Mathematics Series, 5 (Shiva Publishing Ltd., Nantwich, 1982).Google Scholar
[8]Katznelson, Y., ‘Sur les algèbres dont les éléments non négatifs admettent des racines carrées’, Ann. Sci. École Norm. Sup. (3) 77 (1960), 167174 (in French).CrossRefGoogle Scholar
[9]Kulkarni, S. H. and Limaye, B. V., ‘Gel’fand-Naimark theorems for real Banach *-algebras’, Math. Japon. 25(5) (1980), 545558.Google Scholar
[10]Kulkarni, S. H. and Limaye, B. V., Real Function Algebras, Monographs and Textbooks in Pure and Applied Mathematics, 168 (Marcel Dekker, New York, 1992).Google Scholar
[11]Palmer, T. W., Banach Algebras and the General Theory of *-Algebras, Vol. I, Encyclopedia of Mathematics and its Applications, 49 (Cambridge University Press, Cambridge, 1994).CrossRefGoogle Scholar