Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T22:06:21.012Z Has data issue: false hasContentIssue false

Recurrence rates for loosely Markov dynamical systems

Published online by Cambridge University Press:  09 April 2009

Mariusz Urbański
Affiliation:
Department of MathematicsUniversity of North TexasP.O. Box 311430 Denton TX 76203-1430USA e-mail: urbanski@unt.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The concept of loosely Markov dynamical systems is introduced. We show that for these systems the recurrence rates and pointwise dimensions coincide. The systems generated by hyperbolic exponential maps, arbitrary rational functions of the Riemann sphere, and measurable dynamical systems generated by infinite conformal iterated function systems are all checked to be loosely Markov.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Barreira, L. and Saussol, B., ‘Hausdorff dimensions of measures via Poincaré recurrence’, Comm. Math. Phys. 219 (2001), 443463.CrossRefGoogle Scholar
[2]Barreira, L. and Saussol, B., ‘Product structure of Poincaré recurrence’, Ergodic Theory Dynam. Systems 22 (2002), 3361.CrossRefGoogle Scholar
[3]Benedetti, R. and Petronio, C., Lectures on hyperbolic geometry (Springer, Berlin, 1992).CrossRefGoogle Scholar
[4]Boshernitzan, M., ‘Quantitative recurrence results’, Invent. Math. 113 (1993), 617631.CrossRefGoogle Scholar
[5]Denker, M. and Urbański, M., ‘Ergodic theory of equilibrium states for rational maps’, Nonlinearity 4 (1991), 103134.CrossRefGoogle Scholar
[6]Hanus, P., Mauldin, D. and Urbański, M., ‘Thermodynamic formalism and multifractal analysis of conformal infinite iterated function systems’, Ada Math. Hun garica 96 (2002), 2798.Google Scholar
[7]Hanus, P. and Urbański, M., ‘A new class of positive recurrent functions’, in: Geometry and topology in dynamics, Contemporary Mathematics Series of the AMS 246 (Amer. Math. Soc., Providence, RI, 1999) pp. 123136.CrossRefGoogle Scholar
[8]Haydn, N., ‘Convergence of the transfer operator for rational maps’, Ergodic Theory Dynam. Systems 19 (1999), 657669.CrossRefGoogle Scholar
[9]Mauldin, R. D. and Urbański, M., ‘Dimensions and measures in infinite iterated function systems’, Proc. London Math. Soc. (3) 73 (1996), 105154.CrossRefGoogle Scholar
[10]Mauldin, R. D. and Urbański, M., Graph directed Markov systems: geometry and dynamics of limit sets (Cambridge Univ. Press, 2003).CrossRefGoogle Scholar
[11]Peres, Y., Rams, M., Simon, K. and Solomyak, B., ‘Equivalence of positive hausdorif measure and the open set condition for self-conformal sets’, Proc. Amer. Math. Soc. 129 (2001), 26892699.CrossRefGoogle Scholar
[12]Przytycki, F. and Urbański, M., Fractals in the plane. The ergodic theory methods (Cambridge Univ. Press, to appear).Google Scholar
[13]Walters, P., An introduction to ergodic theory (Springer, 1982).CrossRefGoogle Scholar
[14]Saussol, B., Troubetzkoy, S. and Vaienti, S., ‘No small return’, in preparation.Google Scholar
[15]Urbański, M., ‘Thermodynamic formalism and multifractal analysis for hyperbolic exponential functions’, Preprint, 2005.Google Scholar
[16]Urbański, M., ‘Hausdorif measures versus equilibrium states of conformal infinite iterated function systems’, Period. Math. Hungar 37 (1998), 153205.CrossRefGoogle Scholar
[17]Urbański, M. and Zdunik, A., ‘Maximizing measures on metrizable non-compact spaces’, Preprint, 2004, to appear in Proc. Edinb. Math. Soc.Google Scholar