We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We provide a short, intuitive proof of Isbell’s zigzag theorem.
[1]Higgins, P. M., ‘A short proof of Isbell’s zigzag theorem’, Pacific J. Math.144(1) (1990), 47–50.CrossRefGoogle Scholar
[2]
[2]Higgins, P. M., Techniques of Semigroup Theory (Oxford University Press, Oxford, 1992).CrossRefGoogle Scholar
[3]
[3]Howie, J. M., Fundamentals of Semigroup Theory, London Mathematical Society Monographs Series, 12 (Oxford University Press, Oxford, 1996).Google Scholar
[4]
[4]Storrer, H. H., ‘An algebraic proof of Isbell’s zigzag theorem’, Semigroup Forum12 (1976), 83–88.CrossRefGoogle Scholar
[5]
[5]Renshaw, J., ‘On free product of semigroups and a new proof of Isbell’s zigzag theorem’, J. Algebra251 (2002), 12–15.CrossRefGoogle Scholar
[6]
[6]Philip, J. M., ‘A proof of Isbell’s zigzag theorem’, J. Algebra32 (1974), 328–331.CrossRefGoogle Scholar
[7]
[7]Isbell, J. R., ‘Epimorphisms and dominions’. Conference on Categorical Algebra, La Jolla, California, 1965, Proceedings, (Springer, Berlin, 1966), pp. 232–246.CrossRefGoogle Scholar
[8]
[8]Howie, J. M. and Isbell, J. R., ‘Epimorphisms and dominions II’, J. Algebra6 (1967), 7–21.CrossRefGoogle Scholar