Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T23:27:12.282Z Has data issue: false hasContentIssue false

PRESENTATIONS OF INVERSE SEMIGROUPS, THEIR KERNELS AND EXTENSIONS

Part of: Semigroups

Published online by Cambridge University Press:  08 July 2011

CATARINA CARVALHO
Affiliation:
Centro de algebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal (email: ccarvalho@cii.fc.ul.pt)
ROBERT D. GRAY*
Affiliation:
Centro de algebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal (email: rdgray@fc.ul.pt)
NIK RUSKUC
Affiliation:
School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK (email: nik@mcs.st-andrews.ac.uk)
*
For correspondence; e-mail: rdgray@fc.ul.pt
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let S be an inverse semigroup and let π:ST be a surjective homomorphism with kernel K. We show how to obtain a presentation for K from a presentation for S, and vice versa. We then investigate the relationship between the properties of S, K and T, focusing mainly on finiteness conditions. In particular we consider finite presentability, solubility of the word problem, residual finiteness, and the homological finiteness property FPn. Our results extend several classical results from combinatorial group theory concerning group extensions to inverse semigroups. Examples are also provided that highlight the differences with the special case of groups.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

Footnotes

Carvalho was supported by FCT grant SFRH/BPD/26216/2006. Part of this work was done while Gray was an EPSRC Postdoctoral Research Fellow at the University of St Andrews, Scotland. Gray was also partially supported by FCT and FEDER, project POCTI-ISFL-1-143 of the Centro de Álgebra da Universidade de Lisboa, and by the project PTDC/MAT/69514/2006.

References

[1]Alonso, J. M., ‘Inégalités isopérimétriques et quasi-isométries’, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 761764.Google Scholar
[2]Alonso, J. M., ‘Finiteness conditions on groups and quasi-isometries’, J. Pure Appl. Algebra 95 (1994), 121129.CrossRefGoogle Scholar
[3]Anick, D. J., ‘On the homology of associative algebras’, Trans. Amer. Math. Soc. 296 (1986), 641659.CrossRefGoogle Scholar
[4]Auinger, K., ‘Residual finiteness of free products of combinatorial strict inverse semigroups’, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 137147.CrossRefGoogle Scholar
[5]Bestvina, M. and Brady, N., ‘Morse theory and finiteness properties of groups’, Invent. Math. 129 (1997), 445470.CrossRefGoogle Scholar
[6]Bieri, R., Homological Dimension of Discrete Groups, Queen Mary College Mathematics Notes (Mathematics Department, Queen Mary College, London, 1976).Google Scholar
[7]Bieri, R. and Harlander, J., ‘On the FP3-conjecture for metabelian groups’, J. Lond. Math. Soc. (2) 64 (2001), 595610.CrossRefGoogle Scholar
[8]Billhardt, B., ‘On a wreath product embedding for regular semigroups’, Semigroup Forum 46 (1993), 6272.CrossRefGoogle Scholar
[9]Billhardt, B. and Szittyai, I., ‘On embeddability of idempotent separating extensions of inverse semigroups’, Semigroup Forum 61 (2000), 2631.CrossRefGoogle Scholar
[10]Birget, J.-C., Margolis, S. W. and Meakin, J. C., ‘The word problem for inverse monoids presented by one idempotent relator’, Theoret. Comput. Sci. 123 (1994), 273289.CrossRefGoogle Scholar
[11]Book, R. V. and Otto, F., String-rewriting Systems, Texts and Monographs in Computer Science (Springer, New York, 1993).CrossRefGoogle Scholar
[12]Brown, K. S., ‘The geometry of rewriting systems: a proof of the Anick–Groves–Squier theorem’, in: Algorithms and Classification in Combinatorial Group Theory (Berkeley, CA, 1989), Mathematical Sciences Research Institute Publications, 23 (Springer, New York, 1992), pp. 137163.CrossRefGoogle Scholar
[13]Brown, T. C., ‘Locally finite semigroups’, Ukraïn. Mat. Zh. 20 (1968), 732738.Google Scholar
[14]Brown, T. C., ‘An interesting combinatorial method in the theory of locally finite semigroups’, Pacific J. Math. 36 (1971), 285289.CrossRefGoogle Scholar
[15]Bux, K.-U. and Wortman, K., ‘Finiteness properties of arithmetic groups over function fields’, Invent. Math. 167 (2007), 355378.CrossRefGoogle Scholar
[16]Campbell, C. M., Robertson, E. F., Ruskuc, N. and Thomas, R. M., ‘Reidemeister–Schreier type rewriting for semigroups’, Semigroup Forum 51 (1995), 4762.CrossRefGoogle Scholar
[17]Carvalho, C. A., ‘Presentations of semigroups and inverse semigroups’, MSc Thesis, University of St Andrews, 2002.Google Scholar
[18]Cohen, D. E., ‘String rewriting and homology of monoids’, Math. Structures Comput. Sci. 7 (1997), 207240.CrossRefGoogle Scholar
[19]D’Alarcao, H., ‘Idempotent-separating extensions of inverse semigroups’, J. Aust. Math. Soc. 9 (1969), 211217.CrossRefGoogle Scholar
[20]de la Harpe, P., Topics in Geometric Group Theory, Chicago Lectures in Mathematics (University of Chicago Press, Chicago, IL, 2000).Google Scholar
[21]Eršova, T. I., ‘Inverse semigroups with some finiteness conditions’, Izv. Vyssh. Uchebn. Zaved. Mat. 11(186) (1977), 714.Google Scholar
[22]Golubov, È. A., ‘Finitely approximable regular semigroups’, Mat. Zametki 17 (1975), 423432.Google Scholar
[23]Gomes, G. M. S. and Szendrei, M. B., ‘Idempotent pure extensions by inverse semigroups via quivers’, J. Pure Appl. Algebra 127 (1998), 1538.CrossRefGoogle Scholar
[24]Gray, R. and Pride, S. J., ‘Homological finiteness properties of monoids, their ideals and maximal subgroups’, J. Pure Appl. Algebra, in press.Google Scholar
[25]Grillet, P.-A., Semigroups. An Introduction to the Structure Theory, Monographs and Textbooks in Pure and Applied Mathematics, 193 (Marcel Dekker Inc., New York, 1995).Google Scholar
[26]Howie, J. M., Fundamentals of Semigroup Theory, London Mathematical Society Monographs. New Series, 12 (Oxford University Press, New York, 1995).CrossRefGoogle Scholar
[27]Ivanov, S. V., Margolis, S. W. and Meakin, J. C., ‘On one-relator inverse monoids and one-relator groups’, J. Pure Appl. Algebra 159 (2001), 83111.CrossRefGoogle Scholar
[28]Lawson, M. V., Inverse Semigroups. The Theory of Partial Symmetries (World Scientific, River Edge, NJ, 1998).CrossRefGoogle Scholar
[29]Lawson, M. V., Margolis, S. W. and Steinberg, B., ‘Expansions of inverse semigroups’, J. Aust. Math. Soc. 80 (2006), 205228.CrossRefGoogle Scholar
[30]Le Saëc, B., Pin, J.-E. and Weil, P., ‘Semigroups with idempotent stabilizers and applications to automata theory’, Internat. J. Algebra Comput. 1 (1991), 291314.CrossRefGoogle Scholar
[31]Leary, I. J. and Saadetoğlu, M., ‘Some groups of finite homological type’, Geom. Dedicata 119 (2006), 113120.CrossRefGoogle Scholar
[32]Lyndon, R. C. and Schupp, P. E., Combinatorial Group Theory, reprint of the 1977 edition Classics in Mathematics (Springer, Berlin, 2001).CrossRefGoogle Scholar
[33]Magnus, W., Karrass, A. and Solitar, D., Combinatorial Group Theory, Presentations of Groups in Terms of Generators and Relations, revised edn (Dover Publications, New York, 1976).Google Scholar
[34]Meakin, J. C. and Yamamura, A., ‘Bass–Serre theory and inverse monoids’, in: Semigroups and Applications (St. Andrews, 1997) (World Scientific, River Edge, NJ, 1998).Google Scholar
[35]Munn, W. D., ‘Free inverse semigroups’, Proc. Lond. Math. Soc. 3 29 (1974), 385404.CrossRefGoogle Scholar
[36]Otto, F. and Kobayashi, Y., ‘Properties of monoids that are presented by finite convergent string-rewriting systems—a survey’, in: Advances in Algorithms, Languages, and Complexity (Kluwer, Dordrecht, 1997), pp. 225266.CrossRefGoogle Scholar
[37]Ovsyannikov, A. Ya., ‘A general theorem on inverse semigroups with finiteness conditions’, Mat. Zametki 41 (1987), 138147, 285.Google Scholar
[38]Ruškuc, N., ‘Presentations for subgroups of monoids’, J. Algebra 220 (1999), 365380.CrossRefGoogle Scholar
[39]Ruškuc, N. and Thomas, R. M., ‘Syntactic and Rees indices of subsemigroups’, J. Algebra 205 (1998), 435450.CrossRefGoogle Scholar
[40]Schein, B. M., ‘Free inverse semigroups are not finitely presentable’, Acta Math. Acad. Sci. Hung. 26 (1975), 4152.CrossRefGoogle Scholar
[41]Steinberg, B., ‘A topological approach to inverse and regular semigroups’, Pacific J. Math. 208 (2003), 367396.CrossRefGoogle Scholar
[42]Steinberg, B., ‘The uniform word problem for groups and finite Rees quotients of E-unitary inverse semigroups’, J. Algebra 266 (2003), 113.CrossRefGoogle Scholar
[43]Steinberg, B., ‘A groupoid approach to discrete inverse semigroup algebras’, Adv. Math. 223 (2010), 689727.CrossRefGoogle Scholar
[44]Stephen, J. B., ‘Presentations of inverse monoids’, J. Pure Appl. Algebra 63 (1990), 81112.CrossRefGoogle Scholar