No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
In this paper one more canonical method to construct the irreducible unitary representations of a connected, simply connected nilpotent Lie group is introduced. Although we used Kirillov' analysis to deduce this procedure, the method obtained differs from that of Kirillov's, in that one does not need to consider the codjoint representation of the group in the dual of its Lie algebra (in fact, neither does one need to consider the Lie algebra of the group, provided one knows certain connected subgroups and their characters). The method also differs from that of Mackey's as one only needs to induce characters to obtain all irreducible representations of the group.