Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:37:09.422Z Has data issue: false hasContentIssue false

ON VON NEUMANN–JORDAN CONSTANTS

Published online by Cambridge University Press:  15 December 2009

KAZUO HASHIMOTO*
Affiliation:
Hiroshima Jogakuin University, 4-13-1 Ushita Higashi Higashi-ku, Hiroshima 732-0063, Japan (email: hasimoto@gaines.hju.ac.jp)
GEN NAKAMURA
Affiliation:
Matsue College of Technology, 14-4 Nishi-ikuma, Matsue, Shimane 690-8518, Japan (email: nakamura@matsue-ct.ac.jp)
*
For correspondence; e-mail: hasimoto@gaines.hju.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note, we provide an example of a Banach space X for which that is not isomorphic to any Hilbert space, where denotes the infimum of all von Neumann–Jordan constants for equivalent norms of X.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association, Inc. 2009

References

[1]Clarkson, J. A., ‘The von Neumann–Jordan constant for the Lebesgue space’, Ann. of Math. (2) 38 (1937), 114115.CrossRefGoogle Scholar
[2]Jordan, P. and von Neumann, J., ‘On inner products in linear metric spaces’, Ann. of Math. (2) 36 (1935), 719723.CrossRefGoogle Scholar
[3]Kato, M., Maligranda, L. and Takahashi, Y., ‘On James and Jordan–von Neumann constants and normal structure coefficient of Banach spaces’, Studia Math. 144(2) (2001), 275295.CrossRefGoogle Scholar
[4]Kato, M. and Takahashi, Y., ‘Uniform convexity, uniform non-squareness and von Neumann–Jordan constant for Banach spaces’, RIMS Kokyuroku 939 (1996), 8796.Google Scholar
[5]Kato, M. and Takahashi, Y., ‘On the von Neumann–Jordan constant for Banach spaces’, Proc. Amer. Math. Soc. 125 (1997), 10551062.CrossRefGoogle Scholar
[6]Kato, M. and Takahashi, Y., ‘Von Neumann–Jordan constant for Lebesgue–Bochner spaces’, J. Inequal. Appl. 2 (1998), 8997.Google Scholar
[7]Kato, M., Takahashi, Y. and Hashimoto, K., ‘On n-th von Neumann–Jordan constants for Banach spaces’, Bull. Kyushu Inst. Technol. Pure Appl. Math. 45 (1998), 2533.Google Scholar
[8]Takahashi, Y. and Kato, M., ‘Von Neumann–Jordan constant and uniformly non-square Banach spaces’, Nihonkai Math. J. 9 (1998), 155169.Google Scholar