Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T07:11:08.625Z Has data issue: false hasContentIssue false

ON THE UNIFORM PERFECTNESS OF THE BOUNDARY OF MULTIPLY CONNECTED WANDERING DOMAINS

Published online by Cambridge University Press:  04 November 2011

WALTER BERGWEILER*
Affiliation:
Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, D–24098 Kiel, Germany (email: bergweiler@math.uni-kiel.de)
JIAN-HUA ZHENG
Affiliation:
Department of Mathematical Sciences, Tsinghua University, 100084, Beijing, PR China (email: jzheng@math.tsinghua.edu.cn)
*
For correspondence; e-mail: bergweiler@math.uni-kiel.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate when the boundary of a multiply connected wandering domain of an entire function is uniformly perfect. We give a general criterion implying that it is not uniformly perfect. This criterion applies in particular to examples of multiply connected wandering domains given by Baker. We also provide examples of infinitely connected wandering domains whose boundary is uniformly perfect.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

Footnotes

The first-named author was supported by a Chinese Academy of Sciences Visiting Professorship for Senior International Scientists, Grant No. 2010 TIJ10, the Deutsche Forschungsgemeinschaft, Be 1508/7-1, the EU Research Training Network CODY and the ESF Networking Programme HCAA. The second-named author was supported by Grant No. 10871108 of the NSF of China.

References

[1]Baker, I. N., ‘Multiply connected domains of normality in iteration theory’, Math. Z. 81 (1963), 206214.CrossRefGoogle Scholar
[2]Baker, I. N., ‘The domains of normality of an entire function’, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 277283.CrossRefGoogle Scholar
[3]Baker, I. N., ‘An entire function which has wandering domains’, J. Aust. Math. Soc. (Ser. A) 22 (1976), 173176.CrossRefGoogle Scholar
[4]Baker, I. N., ‘Wandering domains in the iteration of entire functions’, Proc. Lond. Math. Soc. (3) 49 (1984), 563576.CrossRefGoogle Scholar
[5]Baker, I. N., ‘Infinite limits in the iteration of entire functions’, Ergodic Theory Dynam. Systems 8 (1988), 503507.CrossRefGoogle Scholar
[6]Beardon, A. F. and Pommerenke, Ch., ‘The Poincaré metric of plane domains’, J. Lond. Math. Soc. 18 (1978), 475483.CrossRefGoogle Scholar
[7]Bergweiler, W., ‘Iteration of meromorphic functions’, Bull. Amer. Math. Soc. (N.S.) 29 (1993), 151188.CrossRefGoogle Scholar
[8]Bergweiler, W., ‘Connectivity of Fatou components’, Oberwolfach Rep. 6 (2009), 29462948.Google Scholar
[9]Bergweiler, W., Rippon, P. J. and Stallard, G. M., ‘Multiply connected wandering domains of entire functions’, Preprint, arXiv:1109.1794.Google Scholar
[10]Eremenko, A., unpublished manuscript, http://www.math.purdue.edu/∼eremenko/dvi/ups.pdf.Google Scholar
[11]Hinkkanen, A., ‘Julia sets of rational functions are uniformly perfect’, Math. Proc. Cambridge Philos. Soc. 113 (1993), 543559.CrossRefGoogle Scholar
[12]Kisaka, M. and Shishikura, M., ‘On multiply connected wandering domains of entire functions’, in: Transcendental Dynamics and Complex Analysis, LMS Lecture Note Series, 348 (eds. Rippon, P. J. and Stallard, G. M.) (Cambridge University Press, Cambridge, 2008), pp. 217250.CrossRefGoogle Scholar
[13]Mañé, R. and da Rocha, L. F., ‘Julia sets are uniformly perfect’, Proc. Amer. Math. Soc. 116 (1992), 251257.CrossRefGoogle Scholar
[14]McMullen, C. T., Complex Dynamics and Renormalization, Annals of Mathematics Studies, 135 (Princeton University Press, Princeton, NJ, 1994).Google Scholar
[15]Pommerenke, Ch., ‘Uniformly perfect sets and the Poincaré metric’, Arch. Math. (Basel) 32 (1979), 192199.CrossRefGoogle Scholar
[16]Schleicher, D., ‘Dynamics of entire functions’, in: Holomorphic Dynamical Systems, Lecture Notes in Mathematics, 1998 (Springer, Heidelberg–Dordrecht–London–New York, 2010), pp. 295339.CrossRefGoogle Scholar
[17]Steinmetz, N., Rational Iteration (Walter de Gruyter, Berlin, 1993).CrossRefGoogle Scholar
[18]Sugawa, T., ‘Various domain constants related to uniform perfectness’, Complex Variables Theory Appl. 36 (1998), 311345.Google Scholar
[19]Sullivan, D., ‘Quasiconformal homeomorphisms and dynamics I. Solution of the Fatou–Julia problem on wandering domains’, Ann. of Math. (2) 122 (1985), 401418.CrossRefGoogle Scholar
[20]Töpfer, H., ‘Über die Iteration der ganzen transzendenten Funktionen, insbesondere von sin z und cos z’, Math. Ann. 117 (1939), 6584.CrossRefGoogle Scholar
[21]Zheng, J. H., ‘On uniformly perfect boundaries of stable domains in iteration of meromorphic functions’, Bull. Lond. Math. Soc. 32 (2000), 439446.Google Scholar
[22]Zheng, J. H., ‘Uniformly perfect sets and distortion of holomorphic functions’, Nagoya Math. J. 164 (2001), 1733.CrossRefGoogle Scholar
[23]Zheng, J. H., ‘On multiply-connected Fatou components in iteration of meromorphic functions’, J. Math. Anal. Appl. 313 (2006), 2437.CrossRefGoogle Scholar