Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
For a wide class of sine trigonometric series we obtain an estimate for the integral modulus of continuity.
[1]Aljančić, S., ‘Sur le module des séries de Fourier particuliéres et sur le module des séries de Fourier transformees par des types divers’, Bull. Acad. Serbe Sci. Arts30 (6) (1967), 13–38.Google Scholar
[2]
[2]Izumi, M., and Izumi, S., ‘Modulus of continuity of functions defined by trigonometric series’, J. Math. Anal. Appl.24 (1968), 564–581.CrossRefGoogle Scholar
[3]
[3]Ram, B., ‘On the integral modulus of continuity of Fourier series’, J. Analyse Math.28 (1975), 78–85.CrossRefGoogle Scholar
[4]
[4]Ram, B., ‘Convergence of certain cosine sums in the metric space L’, Proc. Amer. Math. Soc.66 (1977), 258–260.Google Scholar
[5]
[5]Teljakovsk, S. A., ‘The integral modulus of continuity of functions with quasiconvex Fourier coefficients’, Sibirsk. Mat. Ž.11 (1970), 1140–1145.Google Scholar
[6]
[6]Teljakovski, S. A., ‘A sufficient condition of Sidon for the integrability of trigonometric series’, Mat. Zametki14 (1973), 317–328.Google Scholar
[7]
[7]Timan, A. F., Theory of approximation of functions of ral variables (Hindustan Publishing Corporation, India, 1966).Google Scholar