Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T19:28:40.331Z Has data issue: false hasContentIssue false

On supersoluble groups of Wielandt length two

Published online by Cambridge University Press:  09 April 2009

Asif Ali
Affiliation:
Department of MathematicsQuaid-I-Azam UniversityIslamabad 45320Pakistan e-mail:asif.ali@anu.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper gives a characterisation of finite supersoluble groups of Wielandt length two of order coprime to six.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Ali, A., ‘On the Wielandt length of a finite supersoluble group’, Proc. Roy. Soc. Edinburgh Ser. A 130 (2000), 12171226.CrossRefGoogle Scholar
[2]Cooper, C., ‘Power automorphisms of a group’, Math. Z. 107 (1968), 335356.CrossRefGoogle Scholar
[3]Doerk, K. and Hawkes, T., Finite soluble groups (Walter de Gruyter, Berlin, 1992).CrossRefGoogle Scholar
[4]Huppert, B., Endliche Gruppen I, Die Grundlehren der mathematischen wissenschaften Band 134 (Springer, Berlin, 1967).Google Scholar
[5]Magnus, W., Karrass, A. and Solitar, D., Combinatorial group theory, 2nd edition (Dover Publications, 1976).Google Scholar
[6]Ormerod, E. A., ‘Groups of Wielandt length two’, Math. Proc. Cambridge Philos. Soc. 110 (1991), 229244.CrossRefGoogle Scholar
[7]Robinson, D. J. S., A course in the theory of groups (Springer, New York, 1982).Google Scholar
[8]Schenkman, E., ‘On the norm of a group’, Illinois J. Math. 4 (1960), 150152.Google Scholar
[9]Wielandt, H., ‘Über den Normalisator der subnormalen Untergruppen’, Math. Z. 69 (1958), 463465.Google Scholar