Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T14:39:40.483Z Has data issue: false hasContentIssue false

On Products in Lattice-ordered Algebras

Published online by Cambridge University Press:  09 April 2009

Karim Boulabiar
Affiliation:
Département des Classes Préparatoires Institut Préparatoire aux Etudes Scientifiques et Techniques Université7 Novembre á Carthage BP 51, 2070-La MarsaTunisia e-mail: karim.boulabiar@ipest.rnu.tn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let A be a uniformly complete vector sublattice of an Archimedean semiprime f-algebra B and p ∈ {1, 2,…}. It is shown that the set ΠBp (A) = {f1 … fp: fk ∈ A, k = 1, …, p } is a uniformly complete vector sublattice of B. Moreover, if A is provided with an almost f-algebra multiplication * then there exists a positive operator Tp, from ΠBp(A) into A such that fi *…* fp = Tp(f1 …fp) for all f1…fpA.

As application, being given a uniformly complete almost f-algebra (A, *) and a natural number p ≧ 3, the set Π*p(A) = {f1 *… *fp: fk ∈ A, k = 1…p} is a uniformly complete semiprime f-algebra under the ordering and the multiplication inherited from A.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2003

References

[1]Aliprantis, C. D. and Borkinshaw, O., Positive operators (Academic Press, Orlando, 1985).Google Scholar
[2]Bernau, S. J. and Huijsmans, C. B., ‘Almost f-algebras and d-algebras’, Math. Proc. Cambridge Philos. Soc. 107 (1990), 287308.Google Scholar
[3]Beukers, F. and Huijsmans, C. B., ‘Calculus in f-algebras’, J. Austral. Math. Soc. (Ser. A) 37 (1984), 110116.CrossRefGoogle Scholar
[4]Birkhoff, G., Lattice theory, Amer. Math. Soc. Colloquium Publications 25, 3rd Edition (Amer. Math. Soc., Providence, RI, 1967).Google Scholar
[5]Birkhoff, G. and Pierce, R. S., ‘Lattice-ordered ring’, An. Acad. Bras., Ci 28 (1956), 4169.Google Scholar
[6]Boulabiar, K., ‘On the positive orthosymmetric bilinear maps’, submitted.Google Scholar
[7]Boulabiar, K., ‘A relationship between two almost f-algebra products’, Algebra Univ. 43 (2000), 347367.CrossRefGoogle Scholar
[8]Boulabiar, K., ‘Products in almost f-algebras’, Comment. Math. Univ. Carolinae 41 (2000), 747759.Google Scholar
[9]Buskes, G. and van Rooij, A., ‘Representation of Riesz spaces without the axiom of choice, Three papers on Riesz spaces and almost f -algebras, Technical Report 9526 (Catholic University Nijmegen, 1995).Google Scholar
[10]Buskes, G. and van Rooij, A., ‘Almost f-algebras: structure and the Dedekind completion, Positivity 3 (2000), 233243.Google Scholar
[11]de Pagter, B., f-algebras and orthomorphisms (Ph.D. Thesis, Leiden, 1981).Google Scholar
[12]Huijsmans, C. B. and de Pagter, B., ‘Averaging operators and positive contractive projections’, Math. Appl. 113 (1986), 163184.Google Scholar
[13]Kudláček, V., ‘0 nékterých typech l-okruhu’, Sb. Vysoké. Učni Tech. Brně 1–2 (1962), 179181.Google Scholar
[14]Luxembourg, W. A. J. and Zaanen, A. C., Riesz spaces I (North-Holland, Amsterdam, 1971).Google Scholar
[15]Meyer-Nieberg, P., Banach lattices, Universitext (Springer, Berlin, 1991).CrossRefGoogle Scholar
[16]Scheffold, E., ‘FF-Banachverbandsalgebren’, Math. Z. 177 (1981), 193205.CrossRefGoogle Scholar
[17]Zaanen, A. C., Riesz spaces II (North-Holland, Amsterdam, 1983).Google Scholar