Hostname: page-component-6bb9c88b65-zjgpb Total loading time: 0 Render date: 2025-07-26T12:55:59.288Z Has data issue: false hasContentIssue false

On non-isotropic homogeneous Lipschitz spaces

Published online by Cambridge University Press:  09 April 2009

Stefano Meda
Affiliation:
Departmento di Matematica, dell 'Università di Trento58050 Povo (TN), Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that in a non-isotropic Euclidean space, homogeneous Lipschitz spaces of distributions, defined in terms of (generalized) Weierstrass integrals, can be characterized by means of higher order difference operators.

Information

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1989

References

[1]Cotlar, M. and Sadosky, C., ‘On quasi-homogeneous Bessel potential operators’, Proc. Sympos. Pure Math. 10 (1966), 275287.Google Scholar
[2]Flett, T. M., ‘Temperatures, Bessel potential and Lipschitz spaces,’ Proc. London Math. Soc. 22 (1971), 385–207.Google Scholar
[3]Folland, G. B., ‘Subelliptic estimates and functions spaces on nilpotent Lie groups’, Ark. Math. 13 (1975), 161207.Google Scholar
[4]Folland, G. B. and Stein, E. M., Hardy spaces on homogeneous groups, (Math. Notes 28, Princeton, 1982).Google Scholar
[5]Gaudry, G. I. and Pini, R., ‘Bernstein's theorem for compact connected Lie groups,’ Math. Proc. Cambridge Philos. Soc. 99 (1986), 297305.Google Scholar
[6]Giulini, S., ‘Approximation and Besov spaces on stratified groups,’ Proc. Amer. Math. Soc. 96 (1986), 569578.CrossRefGoogle Scholar
[7]Greenwald, H., ‘On the theory of homogeneous Lipschitz spaces and Campanato spaces,’ Pacific J. Math. 106 (1983), 8793.Google Scholar
[8]Herz, C., ‘Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transform,’ J. Math. Mech. 18 (1968), 283323.Google Scholar
[9]Inglis, I. R., ‘Bernstein's theorem and the Fourier algebra of the Heisenberg group,’ Boll. Un. Mat. Ital. (VI) 2–A (1983), 3946.Google Scholar
[10]Inglis, I. R., ‘Weak and strong mapping properties of translation invariant operators,’ Boll. Un. Mat. Ital. (VI) 1–B (1982), 523533.Google Scholar
[11]Janson, S., ‘Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation,’ Duke Math. J. 47 (1980), 959982.CrossRefGoogle Scholar
[12]Janson, S., Taibleson, M. H. and Weiss, G., ‘Elementary characterizations of the MorreyCompanato spaces,’ Harmonic Analysis, edited by Mauceri, G., Ricci, F. and Weiss, G., pp. 101104 (Lecture Notes in Mathematics 992, Springer-Verlag, 1983).CrossRefGoogle Scholar
[13]Johnson, R., ‘Temperatures, Riesz potentials and the Lipschitz spaces of Herz,’ Proc. London Math. Soc. 27 (1973), 290316.CrossRefGoogle Scholar
[14]Krantz, S. G., ‘Geometric Lipschitz spaces and applications to complex function theory and nilpotent groups,’ J. Funct. Anal. 34 (1979), 456471.Google Scholar
[15]Soardi, P. M., ‘On non-isotropic Lipschitz spaces,’ Harmonic Analysis, edited by Mauceri, G., Ricci, F. and Weiss, G., pp. 115138 (Lecture Notes in Mathematics 992, Springer-Verlag, 1983).Google Scholar
[16]Stein, E. M., Singular Integrals and Differentiability Properties of Functions, (Princeton University Press, 1970).Google Scholar
[17]Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, (Princeton University Press, 1971).Google Scholar
[18]Taibleson, M. H., ‘On the theory of Lipschitz spaces of distributions on Euclidean n-spaces, I’, J. Math. Mech. 13 (1964), 407480.Google Scholar
[19]Taibleson, M. H., ‘On the theory of Lipschitz spaces of distributions on Euclidean n-spaces, II,’ J. Math. Mech. 14 (1965), 821839.Google Scholar
[20]Torchinski, A., ‘Singular integrals in the space ∧(B, X),’ Studia Math. 48 (1973), 165189.CrossRefGoogle Scholar