Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We give sufficient conditions for an analytic function from Rn to R to be analytically equivalent to a rational regular function.
[1]Bochnak, J., Kucharz, W. and Shiota, M., ‘On equivalence of ideals of real global analytic functions and the 17th Hilbert problem’, Invent. Math.63 (1981), 403–421.CrossRefGoogle Scholar
[2]
[2]Bochnak, J., Kucharz, W., and Shiota, M., ‘On algebraicity of global real analytic sets and functions’, Invent. Math.70 (1982), 115–156.CrossRefGoogle Scholar
[4]Shiota, M., ‘Equivalence of differentiable mappings and analytic mappings’, Inst. Hautes Etudes Sci. Publ. Math.54 (1981), 37–122.CrossRefGoogle Scholar
[5]
[5]Shiota, M., ‘Equivalence of differentiable functions, rational functions and polynomials’, Ann. Inst. Fourier (Grenoble)32 (1982), 167–204.CrossRefGoogle Scholar
[6]
[6]Thom, R., ‘L'équivalence d'une fonction différentiable et d'un polynôme’, Topology3, Suppl. 2 (1965), 297–307.CrossRefGoogle Scholar
[7]
[7]Tougeron, J. Cl., Idéaux de fonctions différentiables, (Springer, Berlin-Heidelberg-New York, 1972).CrossRefGoogle Scholar