Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:22:04.230Z Has data issue: false hasContentIssue false

On an inversion theorem of Möbius

Published online by Cambridge University Press:  09 April 2009

J. H. Loxton
Affiliation:
School of Mathematics University of New South Wales, Kensington, N.S.W. 2033, Australia
J. W. Sanders
Affiliation:
School of Mathematics University of New South Wales, Kensington, N.S.W. 2033, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The theme of the paper is a Möbius inversion principle for infinite sums. We deal with the origins and unprincipled use of this idea in the nineteenth century, its rigorous justification under minimal hypotheses and some applications to a problem in numerical integration.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

Bachman, P. (1894), Die Analytische Zahlentheorie (Leipzig).Google Scholar
Dedekind, R. (1857), ‘Abrifs einer Theorie der höhern Congruenzen in Bezug auf einer reellen Primzahl Modulus’, J. reine angew. Math. 54, 126.Google Scholar
Euler, L. (1748), Introductio in analysin infinitorum, Vol. I (Lausanne).Google Scholar
Hardy, G. H. (1949), Divergent series (Oxford).Google Scholar
Hille, E. (1937), ‘The inversion problem of Möbius’, Duke Math. J. 3, 549569.CrossRefGoogle Scholar
Hille, E. and Szasz, O. (1936), ‘On the completeness of Lambert functions’, Bull. Amer. Math. Soc. 42, 411418.CrossRefGoogle Scholar
II. Ann. of Math. 37, 801815.CrossRefGoogle Scholar
Jordan, C. (1960), Calculus of finite differences (Dover reprint).Google Scholar
Landau, E. (1899), ‘Contribution à la théorie de la fonction ζ(s) de Riemann’, C. R. Acad. Sci. Paris, Sér A-B 129, 812815.Google Scholar
Liouville, J. (1857), ‘Sur l'expression φ(n), qui marque combin la suite 1,2,3, …, n contient de nombres premiers à n’, J. de Math. (2) 2, 110112.Google Scholar
Loxton, J. H. and Sanders, J. W. (1980), ‘The kernel of a rule of approximate integration’, J. Austral. Math. Soc. (Ser B) 21, 257267.CrossRefGoogle Scholar
Lyness, J. N. (1970), ‘The calculation of fourier coefficients by the Möbius inversion of the Poisson summation formula. Part I. Functions whose early derivatives are continuous’, Math. Comp. 24, 101135.Google Scholar
Möbius, A. F. (1832), ‘Ueber einer besondere Art von Umkehrung der Reihen’, J. reine angew. Math. 9, 105123.Google Scholar
Riemann, B. (1859), ‘Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse’, Monatsberichte der Berliner Akademie, 671680.Google Scholar
Rota, G.-C. (1964), ‘On the foundations of combinatorial theory I. Theory of Möbius functions’, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, 340368.CrossRefGoogle Scholar
Tchebychef, P. L. (1851), ‘Note sur differences séries’, J. de Math. (1) 16, 337346.Google Scholar
Tchebychef, P. L. (1852), ‘Mémoire sur les nombres premiers’, J. de Math. (1) 17, 366390.Google Scholar
Wintner, A. (1943), Eratosthenian averages (Baltimore).Google Scholar