Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T11:41:58.721Z Has data issue: false hasContentIssue false

On a problem of mahler for transcendency of function values

Published online by Cambridge University Press:  09 April 2009

Kumiko Nishioka
Affiliation:
Department of MathematicsNara Women's UniversityKita-Uoya Nishimachi, Nara 630, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A transcendence theorem is proved for functions satisfying functional equations of the shape P(z, f(z), f(zp)) = 0, where P is a polynomial and p ≥ 2 is an integer.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1982

References

Lang, S. (1966), Introduction to transcendental numbers (Addison-Wesley).Google Scholar
Loxton, J. H. and van der Poorten, A. J. (1977), ‘Transcendence and algebraic independence by a method of Mahler,’ Transcendence Theory-Advances and Applications, ed. Baker, A. and Masser, D. W., Chapter 15, pp. 211226 (Academic Press).Google Scholar
Mahler, K. (1929), ‘Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen’, Math. Ann. 101, 342366.CrossRefGoogle Scholar
Mahler, K. (1930a), ‘Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen’, Math. Ann. 103, 573587.CrossRefGoogle Scholar
Mahler, K. (1930b), ‘Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen,’ Math. Z. 32, 545585.CrossRefGoogle Scholar
Mahler, K. (1969), ‘Remarks on a paper by W. Schwarz,’ J. Number Theory 1, 512521.CrossRefGoogle Scholar