Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T02:37:50.435Z Has data issue: false hasContentIssue false

On (2, 3, 7)-generation of maximal parabolic subgroups

Published online by Cambridge University Press:  09 April 2009

L. Di Martino
Affiliation:
Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via Bicocca degli Arcimboldi 8, Ed. U7 20126 Milano, Italy e-mail: dimartino@matapp.unimib.it
M. C. Tamburini
Affiliation:
Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia, Italy e-mail: c.tamburini@dmf.bs.unicatt.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a ring with 1 and En (R) be the subgroup of GLn(R) generated by the matrices I + reij, rR, ij. We prove that the subgroup of consisting of the matrices of shape , where and , is (2, 3, 7)-generated whenever R is finitely generated and n, are large enough.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[Co]Conder, M., ‘Generators for alternating and symmetric groups’, J. London Math. Soc. (2) 22 (1980), 7586.CrossRefGoogle Scholar
[HO'M]Hahn, A. J. and O'Meara, O. T., The classical groups and K -theory (Springer, Berlin, 1989).CrossRefGoogle Scholar
[LT]Lucchini, A. and Tamburini, M. C., ‘Classical groups of large rank as Hurwitz groups’, J. Algebra 219 (1999), 531546.CrossRefGoogle Scholar
[LTW]Lucchini, A., Tamburini, M. C. and Wilson, J. S., ‘Hurwitz groups of large rank’, J. London Math. Soc. (2) 61 (2000), 8192.CrossRefGoogle Scholar
[Mo]Molinari, D., Le 17 rappresentazioni di Conder del gruppo Δ(2, 3, 7) (Tesi di laurea, Università Cattolica del Sacro Cuore, Brescia, 1998).Google Scholar