Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T12:58:38.168Z Has data issue: false hasContentIssue false

Nuclear and integral polynomials

Published online by Cambridge University Press:  09 April 2009

Raffaella Cilia
Affiliation:
Dipartimento di Matematica Facoltà di Science, Università di Catania, Viale Andrea Doria, 6 95100 Catania, Itlay e-mail: cilia@dmi.unict.it
Joaquín M. Gutiérrez
Affiliation:
Departamento de Matemática Aplicada ETS de Ingenieros IndustrialesUniversidad Politécnica de MadridC. José Gutiérrez Abascal 2 28006 Madrid, Spain e-mail: jgutierrez@etsii.upm.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let E be a Banach space whose dual E* has the approximation property, and let m be an index. We show that E* has the Radon-Nikodým property if and only if every m-homogeneous integral polynomial from E into any Banach space is nuclear. We also obtain factorization and composition results for nuclear polynomials.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Alencar, R., ‘Multilinear mappings of nuclear and integral type’, Proc. Amer. Math. Soc. 94 (1985), 3338.Google Scholar
[2]Alencar, R., ‘On reflexivity and basis for p(mE)’, Proc. Roy. Irish Acad. 85A (1985), 131138.Google Scholar
[3]Carando, D., ‘Extendible polynomials on Banach spaces’, J. Math. Anal. Appl. 233 (1999), 359372.Google Scholar
[4]Carando, D., ‘Extendibility of polynomials and analytic functions on lp’, Studia Math. 145 (2001), 6373.Google Scholar
[5]Carando, D. and Dimant, V., ‘Duality in spaces of nuclear and integral polynomials’, J. Math. Anal. Appl. 241 (2000), 107121.Google Scholar
[6] Cilia, R., D'Anna, M. and Gutiérrez, J. M., ‘Polynomials on Banach spaces whose duals are isomorphic to l1 (Γ)’, preprint.Google Scholar
[7]Cilia, R., D'Anna, M. and Gutiérrez, J. M., ‘Polynomial characterization of ℒ-spaces’, J. Math. Anal. Appl. 275 (2002), 900912.CrossRefGoogle Scholar
[8] Cilia, R. and Gutiérrez, J. M., ‘Polynomial characterization of Asplund spaces’, Bull. Belgian Math. Soc. Simon Stevin, to appear.Google Scholar
[9]Defant, A. and Floret, K., Tensor norms and operator ideals, Math. Studies 176 (North-Holland, Amsterdam, 1993).Google Scholar
[10]Diestel, J., Jarchow, H. and Tonge, A., Absolutely summing operators, Cambridge Stud. Adv. Math. 43 (Cambridge University Press, Cambridge, 1995).Google Scholar
[11]Diestel, J. and Uhl, J. J. Jr, Vector measures, Math. Surveys Monographs 15 (Amer. Math. Soc., Providence, RI, 1977).CrossRefGoogle Scholar
[12]Dineen, S., Complex analysis on infinite dimensional spaces, Springer Monographs in Math. (Springer, Berlin, 1999).Google Scholar
[13]Floret, K., ‘Natural norms on symmetric tensor products of normed spaces’, Note Mat. 17 (1997), 153188.Google Scholar
[14]Geiß, S., Ideale multilinearer Abbildungen (Diplomarbeit, Jena, 1984).Google Scholar
[15]Meléndez, Y. and Tonge, A., ‘Polynomials and the Pietsch domination theorem’, Math. Proc. Roy. Irish Acad. 99A (1999), 195212.Google Scholar
[16]Mujica, J., Complex analysis in Banach spaces, Math. Studies 120 (North-Holland, Amsterdam, 1986).Google Scholar
[17]Pietsch, A., ‘Ideals of multilinear functionals (designs of a theory)’, in: Proceedings of the Second International Conference on Operator Algebras, Ideals, and their Applications in Theoretical Physics (Leipzig, 1983) (eds. Baumgärtel, H. et al. ), Teubner-Texte Math. 67 (Teubner, Leipzig, 1984) pp. 185199.Google Scholar
[18]Rudin, W., Principles of mathematical analysis (McGraw-Hill, New York, 1976).Google Scholar
[19]Ruess, W. M. and Stegall, C. P., ‘Extreme points in duals of operator spaces’, Math. Ann. 261 (1982), 535546.CrossRefGoogle Scholar
[20]Ryan, R. A., ‘Weakly compact holomorphic mappings on Banach spaces’, Pacific J. Math. 131 (1988), 179190.Google Scholar
[21]Schneider, B., ‘On absolutely p-summing and related multilinear mappings’, Brandenburgische Landeshochschule Wissen. Z. 35 (1991), 105117.Google Scholar
[22]Villanueva, I., ‘Integral mappings between Banach spaces’, J. Math. Anal. Appl. 279 (2003), 5670.Google Scholar