Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T12:43:49.130Z Has data issue: false hasContentIssue false

m-Wielandt series in infinite groups

Published online by Cambridge University Press:  09 April 2009

Clara Franchi
Affiliation:
Dipartimento di Matematica Pura ed Applicata Via Belzoni 7 I-35131 PadovaItaly e-mail: cfranchi@math.unipd.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a group G, um (G) denotes the subgroup of the elements which normalize every subnormal subgroup of G with defect at most m. The m-Wielandt series of G is then defined in a natural way. G is said to have finite m-Wielandt length if it coincides with a term of its m-Wielandt series. We investigate the structure of infinite groups with finite m-Wielandt length.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Baumslag, G., ‘Lecture notes on nilpotent groups’, in: Regional Conference Series in Mathematics No. 2 (Amer. Math. Soc., Providence, 1971) pp. vii+73.Google Scholar
[2]Bryce, R. A., ‘Subgroups like Wielandt's in finite soluble groups’, Math. Proc. Cambridge Philos. Soc. 107 (1990), 239259.CrossRefGoogle Scholar
[3]Casolo, C., ‘Groups with finite conjugacy classes of subnormal subgroups’, Rend. Sem. Mat. Univ. Padova 81 (1989), 107149.Google Scholar
[4]Casolo, C., ‘Soluble groups with finite Wielandt length’, Glasgow Math. J. 31 (1989), 329334.CrossRefGoogle Scholar
[5]Cossey, J., ‘The Wielandt subgroup of a polycyclic group’, Glasgow Math. J. 33 (1991), 231234.CrossRefGoogle Scholar
[6]Franchi, C., ‘Subgroups like Wielandt's in soluble groups’, Glasgow Math. J. 42 (2000), 6774.CrossRefGoogle Scholar
[7]Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers (Oxford University Press, London, 1979).Google Scholar
[8]Huppert, B., Endliche Gruppen I, Die Grundlehren der Mathematischen Wissenschaften 134 (Springer, Berlin, 1967).CrossRefGoogle Scholar
[9]Lennox, J. C. and Stonehewer, S. E., Subnormal subgroups of groups, Oxford Math. Monographs (Oxford University Press, New York, 1987).Google Scholar
[10]McCaughan, D. J., ‘Subnormality in soluble minimax groups’, J. Austral. Math. Soc. 17 (1974), 113128.CrossRefGoogle Scholar
[11]McDougall, D., ‘Soluble minimax groups with the subnormal intersection property’, Math. Z. 114 (1970), 241244.CrossRefGoogle Scholar
[12]Robinson, D. J. S., ‘On finitely generated soluble groups’, Proc. London Math. Soc. (3) 15 (1965), 508516.Google Scholar
[13]Robinson, D. J. S., ‘On the theory of subnormal subgroups’, Math. Z. 89 (1965), 3051.CrossRefGoogle Scholar
[14]Robinson, D. J. S., ‘Residual properties of some classes of infinite soluble groups’, Proc. London Math. Soc. (3) 18 (1968), 495520.CrossRefGoogle Scholar
[15]Robinson, D. J. S., Finiteness conditions and generalized soluble groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 63–62 (Springer, Berlin, 1972).Google Scholar
[16]Robinson, D. J. S., A course in the theory of groups, Graduate Texts in Math. 80 (Springer, Berlin, 1982).CrossRefGoogle Scholar
[17]Roseblade, J. E., ‘On certain subnormal coalition classes’, J. Algebra 1 (1964), 132138.Google Scholar
[18]Roseblade, J. E., ‘On groups in which every subgroup is subnormal’, J. Algebra 2 (1965), 402412.CrossRefGoogle Scholar
[19]Wielandt, H., ‘Über den Normalisator der subnormalen Untergruppen’, Math. Z. 69 (1958), 463465.CrossRefGoogle Scholar