Hostname: page-component-857557d7f7-qdphv Total loading time: 0 Render date: 2025-11-28T23:50:37.980Z Has data issue: false hasContentIssue false

MORPHISMS OF CUNTZ–PIMSNER ALGEBRAS FROM COMPLETELY POSITIVE MAPS

Published online by Cambridge University Press:  31 October 2025

KEVIN AGUYAR BRIX
Affiliation:
School of Mathematics and Statistics, University of Glasgow, Glasgow, UK e-mail: kabrix.math@fastmail.com
ALEXANDER MUNDEY
Affiliation:
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales, Australia e-mail: amundey@uow.edu.au
ADAM RENNIE*
Affiliation:
School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales, Australia

Abstract

We introduce positive correspondences as right $C^*$-modules with left actions given by completely positive maps. Positive correspondences form a semi-category that contains the $C^*$-correspondence (Enchilada) category as a ‘retract’. Kasparov’s KSGNS construction provides a semi-functor from this semi-category onto the $C^*$-correspondence category. The need for left actions by completely positive maps appears naturally when we consider morphisms between Cuntz–Pimsner algebras, and we describe classes of examples arising from projections on $C^*$-correspondences and Fock spaces, as well as examples from conjugation by bi-Hilbertian bimodules of finite index.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The first author was supported by a Carlsberg Foundation Internationalisation Fellowship and a DFF-International postdoc (Case number 1025–00004B). The second author was supported by University of Wollongong AEGiS CONNECT grant 141765.

Communicated by Aidan Sims

In memory of Iain Raeburn, with gratitude for all of his contributions to mathematics and our community

References

Arici, F. and Kaad, J., ‘Gysin sequences and $\mathrm{SU}(2)$ symmetries of ${C}^{\ast }$ -algebras’, Trans. London Math. Soc. 8(1) (2021), 440492.10.1112/tlm3.12038CrossRefGoogle Scholar
Arici, F. and Rennie, A., ‘The Cuntz–Pimsner extension and mapping cone exact sequences’, Math. Scand. 125(2) (2019), 291319.10.7146/math.scand.a-115634CrossRefGoogle Scholar
Brix, K. A. and Carlsen, T. M., ‘Cuntz–Krieger algebras and one-sided conjugacy of shifts of finite type and their groupoids’, J. Aust. Math. Soc. 109(3) (2020), 289298.10.1017/S1446788719000168CrossRefGoogle Scholar
Brix, K. A., Mundey, A. and Rennie, A., ‘Splittings for ${C}^{\ast }$ -correspondences and strong shift equivalence’, Math. Scand. 130(1) (2024), 101148.10.7146/math.scand.a-142308CrossRefGoogle Scholar
Brown, N. and Ozawa, N., ${C}^{\ast }$ -Algebras and Finite-Dimensional Approximations, Graduate Studies in Mathematics, 88 (American Mathematical Society, Providence, RI, 2008).Google Scholar
Bates, T. and Pask, D., ‘Flow equivalence of graph algebras’, Ergodic Theory Dynam. Systems 24 (2004), 367382.10.1017/S0143385703000348CrossRefGoogle Scholar
Brenken, B., ‘Topological quivers as multiplicity free relations’, Math. Scand. 106(2) (2010), 217242.10.7146/math.scand.a-15134CrossRefGoogle Scholar
Brenken, B., ‘Completely positive contractive maps and partial isometries’, Adv. Oper. Theory 3(1) (2018), 271294.Google Scholar
Clare, P., Crisp, T. and Higson, N., ‘Adjoint functors between categories of Hilbert ${C}^{\ast }$ -modules’, J. Inst. Math. Jussieu 17(2) (2018), 453488.10.1017/S1474748016000074CrossRefGoogle Scholar
Cuntz, J. and Krieger, W., ‘A class of ${C}^{\ast }$ -algebras and topological Markov chains’, Invent. Math. 56 (1980), 251268.10.1007/BF01390048CrossRefGoogle Scholar
Carey, A., Neshveyev, S., Nest, R. and Rennie, A., ‘Twisted cyclic theory, equivariant $KK$ -theory and KMS states’, J. reine angew. Math. 650 (2011), 161191.Google Scholar
Dor-On, A. and Markiewicz, D., ‘Operator algebras and subproduct systems arising from stochastic matrices’, J. Funct. Anal. 267 (2014), 10571120.10.1016/j.jfa.2014.05.004CrossRefGoogle Scholar
Eryüzlü, M., Kaliszweski, S. and Quigg, J., ‘Exact sequences in the Enchilada category’, Theory Appl. Categ. 35(12) (2020), 350370.Google Scholar
Echterhoff, S., Kalisewski, S., Quigg, J. and Raeburn, I., ‘Naturality and induced representations’, Bull. Aust. Math. Soc. 61(3) (2000), 415438.10.1017/S0004972700022449CrossRefGoogle Scholar
Echterhoff, S., Kalisewski, S., Quigg, J. and Raeburn, I., ‘A categorical approach to imprimitivity theorems for ${C}^{\ast }$ -dynamical systems’, Mem. Amer. Math. Soc. 180(850) (2006), viii+169 pages.Google Scholar
Eilers, S., Restorff, G., Ruiz, E. and Sørensen, A. P. W., ‘The complete classification of unital graph ${C}^{\ast }$ -algebras: geometric and strong, Duke Math. J. 170 (2021), 24212517.10.1215/00127094-2021-0060CrossRefGoogle Scholar
Eryüzlü, M., ‘Passing ${C}^{\ast }$ -correspondence relations to the Cuntz–Pimsner algebra’, Münster J. Math. 15(2) (2022), 441471.Google Scholar
Goffeng, M., Mesland, B. and Rennie, A., ‘Shift-tail equivalence and an unbounded representative of the Cuntz–Pimsner extension’, Ergodic Theory Dynam. Systems 38(4) (2018), 13891421.10.1017/etds.2016.75CrossRefGoogle Scholar
Goffeng, M., Rennie, A. and Usachev, A., ‘Constructing KMS states from infinite-dimensional spectral triples’, J. Geom. Phys. 143 (2019), 107149.10.1016/j.geomphys.2019.05.006CrossRefGoogle Scholar
Kasparov, G. G., ‘Hilbert ${C}^{\ast }$ -modules: theorems of Stinespring and Voiculescu’, J. Operator Theory 4 (1980), 133150.Google Scholar
Kasparov, G. G., ‘Equivariant $KK$ -theory and the Novikov conjecture’, Invent. Math. 91 (1988), 147201.10.1007/BF01404917CrossRefGoogle Scholar
Katsura, T., ‘ ${C}^{\ast }$ -algebras associated with ${C}^{\ast }$ -correspondences’, J. Funct. Anal. 217(2) (2004), 366401.10.1016/j.jfa.2004.03.010CrossRefGoogle Scholar
Katsura, T., ‘A class of ${C}^{\ast }$ -algebras generalizing both graph algebras and homeomorphism ${C}^{\ast }$ -algebras I. Fundamental results’, Trans. Amer. Math. Soc. 356(11) (2004), 42874322.10.1090/S0002-9947-04-03636-0CrossRefGoogle Scholar
Katsura, T., ‘Ideal structure of ${C}^{\ast }$ -algebras associated with ${C}^{\ast }$ -correspondences’, Pacific J. Math. 230(1) (2007), 107145.10.2140/pjm.2007.230.107CrossRefGoogle Scholar
Kakariadis, E. T. A. and Katsoulis, E. G., ‘ ${C}^{\ast }$ -algebras and equivalences for ${C}^{\ast }$ -correspondences’, J. Funct. Anal. 266(2) (2014), 956988; errata, J. Funct. Anal. 283 (2022).10.1016/j.jfa.2013.09.018CrossRefGoogle Scholar
Kajiwara, T., Pinzari, C. and Watatani, Y., ‘Ideal structure and simplicity of the ${C}^{\ast }$ -algebras generated by Hilbert bimodules’, J. Funct. Anal. 159(2) (1998), 295322.10.1006/jfan.1998.3306CrossRefGoogle Scholar
Kajiwara, T., Pinzari, C. and Watatani, Y., ‘Jones index theory for Hilbert ${C}^{\ast }$ -bimodules and its equivalence with conjugation theory’, J. Funct. Anal. 215 (2004), 149.10.1016/j.jfa.2003.09.008CrossRefGoogle Scholar
Kajiwara, T. and Watatani, Y., ‘ ${C}^{\ast }$ -algebras associated with complex dynamical systems’, Indiana Univ. Math. J. 54(3) (2005), 755778.10.1512/iumj.2005.54.2530CrossRefGoogle Scholar
Kwaśniewski, B. S., ‘Exel’s crossed product and crossed products by completely positive maps’, Houston J. Math. 43(2) (2017), 509567.Google Scholar
Lance, E. C., Hilbert ${C}^{\ast }$ -Modules. A Toolkit for Operator Algebraists, London Mathematical Society Lecture Note Series, 210 (Cambridge University Press, Cambridge, 1995).Google Scholar
Laca, M. and Neshveyev, S., ‘KMS states of quasi-free dynamics on Pimsner algebras’, J. Funct. Anal. 211 (2004), 457482.10.1016/j.jfa.2003.08.008CrossRefGoogle Scholar
Lord, S., Rennie, A. and Várilly, J., ‘Riemannian manifolds in noncommutative geometry’, J. Geom. Phys. 62(7) (2012), 16111638.10.1016/j.geomphys.2012.03.004CrossRefGoogle Scholar
Muhly, P., Pask, D. and Tomforde, M., ‘Strong shift equivalence of ${C}^{\ast }$ -correspondences’, Israel J. Math. 167 (2008), 315346.10.1007/s11856-008-1051-9CrossRefGoogle Scholar
Meyer, R. and Sehnem, C. F., ‘A bicategorical interpretation for relative Cuntz–Pimsner algebras’, Math. Scand. 125(1) (2019), 84112.10.7146/math.scand.a-112630CrossRefGoogle Scholar
Nekrashevych, V., ‘ ${C}^{\ast }$ -algebras and self-similar groups’, J. reine angew. Math. 630 (2009), 59123.Google Scholar
Pimsner, M., ‘A class of ${C}^{\ast }$ -algebras generalising both Cuntz–Krieger algebras and crossed products by $\mathbb{Z}$ ’, in: Free Probability Theory, Fields Institute Communications, 12 (ed. Voiculescu, D.) (American Mathematical Society, Providence, RI, 1997), 189212.10.1090/fic/012/08CrossRefGoogle Scholar
Pask, D. and Rennie, A., ‘The noncommutative geometry of graph ${C}^{\ast }$ -algebras I: the index theorem’, J. Funct. Anal. 233 (2006), 92134.10.1016/j.jfa.2005.07.009CrossRefGoogle Scholar
Raeburn, I., Graph Algebras, CBMS Lecture Notes, 103 (American Mathematical Society, Providence, RI, 2005).10.1090/cbms/103CrossRefGoogle Scholar
Rennie, A., Robertson, D. and Sims, A., ‘The extension class and KMS states for Cuntz–Pimsner algebras of some bi-Hilbertian bimodules’, J. Topol. Anal. 9 (2017), 297327.10.1142/S1793525317500108CrossRefGoogle Scholar
Rennie, A., Robertson, D. and Sims, A., ‘Poincaré duality for Cuntz–Pimsner algebras’, Adv. Math. 347 (2019), 11121172.10.1016/j.aim.2019.02.032CrossRefGoogle Scholar
Rennie, A. and Sims, A., ‘Non-commutative vector bundles for non-unital algebras’, SIGMA 13 (2017), 041, 12 pages.Google Scholar
Raeburn, I. and Thompson, S. J., ‘Countably generated Hilbert modules, the Kasparov stabilisation theorem, and frames with Hilbert modules’, Proc. Amer. Math. Soc. 131(5) (2003), 15571564.10.1090/S0002-9939-02-06787-4CrossRefGoogle Scholar
Raeburn, I. and Williams, D., Morita Equivalence and Continuous-Trace ${C}^{\ast }$ -algebras, Mathematical Surveys and Monographs, 30 (American Mathematical Society, Providence, RI, 1998).Google Scholar
Shalit, O. and Solel, B., ‘Subproduct systems’, Doc. Math. 14 (2009), 801868.10.4171/dm/290CrossRefGoogle Scholar
Tilson, B., ‘Categories as algebra: an essential ingredient in the theory of monoids’, J. Pure Appl. Algebra 48 (1987), 83198.10.1016/0022-4049(87)90108-3CrossRefGoogle Scholar
Viselter, A., ‘Cuntz–Pimsner algebras for subproduct systems’, Internat. J. Math. 23(8) (2012), 1250081.10.1142/S0129167X12500814CrossRefGoogle Scholar
Williams, R. F., ‘Classification of subshifts of finite type’, Ann. of Math. (2) 98 (1973), 120153; errata, Ann. of Math. (2) 99 (1974), 380–381.10.2307/1970908CrossRefGoogle Scholar