Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T23:38:49.020Z Has data issue: false hasContentIssue false

The locally convex topology on the space of meromorphic functions

Published online by Cambridge University Press:  09 April 2009

Karl-Goswin Grosse-Erdmann
Affiliation:
Fachbereich Mathematik FernuniversitätHagen Postfach 940 D-58084 Hagen, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a positive answer to a question of Horst Tietz. A theorem of his that is related to the Mittag-Leffler theorem looks like a duality restult under some locally convex topology on the space of meromorphic functions. Tietz has posed the problem of finding such a topology. It is shown that a topology introduced by Holdguün in 1973 solves the problem. The main tool in the study of this topology is a projective description of it that is derived here. We also argue that Holdgrün's topology is the natural locally convex topology on the space of meromorphic functions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1995

References

[1]Arens, R., ‘Linear topological division algebras’, Bull. Amer. Math. Soc. 53 (1947), 623630.CrossRefGoogle Scholar
[2]Barsukov, E. G., ‘Complete systems in the space of analytic functions with isolated singularities of unique character’, in: Mathematical analysis and its applications, vol. VI (Rostov State University, Rostov-on-Don, 1974) pp. 228237 (in Russian).Google Scholar
[3]Barsukov, E. G., ‘Maximal ideals in an algebra of meromorphic functions’, in: Theory of functions. Differential equations and their applications. No. 1 (Kalmyk State University, Elista, 1976) pp. 2334 (in Russian).Google Scholar
[4]Barsukov, E. G., ‘On abstract meromorphic algebras’, in: Mathematical analysis and its applications (Rostov State University, Rostov-on-Don, 1981) pp. 710 (in Russian).Google Scholar
[5]Barsukov, E. G. and Khaplanov, M. G., ‘A space of meromorphic functions’, Mat. Zametki 17 (1975), 589598 (in Russian),Google Scholar
English translation: Math. Notes 17 (1975), 350355.Google Scholar
[6]Beckenstein, E., Narici, L. and Suffel, C., Topological algebras (North-Holland, Amsterdam, 1977).Google Scholar
[7]Guerrero, P. Bobillo, ‘Topologies on M(A)’, in: Proceedings of the eleventh annual conference of Spanish mathematicians (Murcia, 1970) (Universidad Complutense de Madrid, Madrid, 1973) pp. 2230 (in Spanish).Google Scholar
[8]Boehme, T. K., ‘On the limits of the Gelfand-Mazur theorem’, Proceedings of the conference on convergence spaces (Reno, 1976) (University of Nevada, Reno, 1976) pp. 14.Google Scholar
[9]Burmann, H.-W. and Holdgrün, H. S., ‘Ein vollständiger induktiver Limes aus gewissen meromorphen Funktionen’, Math. Z. 102 (1967), 89109.CrossRefGoogle Scholar
[10]Cima, J. A. and Pfaltzgraff, J. A., ‘The Hornich topology for meromorphic functions in the disk’, J. Reine Angew. Math. 235 (1969), 207220.Google Scholar
[11]Cima, J. and Schober, G., ‘On space of meromorphic functions’, Rocky Mountain J. Math. 9 (1979), 527532.CrossRefGoogle Scholar
[12]Constantinescu, T. and Gheondea, A., ‘Algebraic aspects of the functional calculus for meromorphic functions’, Rev. Roumaine Math. Pures Appl. 27 (1982), 949956.Google Scholar
[13]Conway, J. B., Functions of one complex variable, 2nd edition (Springer, New York, 1978).CrossRefGoogle Scholar
[14]Floret, K. and Wloka, J., Einführung in die Theorie der lokalkonvexen Räume (Springer, Berlin, 1968).CrossRefGoogle Scholar
[15]Golovin, V. D., ‘Duality in spaces of holomorphic functions with singularities’, Dokl. Akad. Nauk SSSR 168 (1966), 912 (in Russian).Google Scholar
English translation: Soviet Math. Dokl. 7 (1966), 571574.Google Scholar
[16]Golovin, V. D., ‘On some spaces of holomorphic functions with isolated singularities’, Mat. Sb. 73 (115) (1967), 2141 (in Russian).Google Scholar
English translation: Math. USSR - Sb. 2 (1967), 1733.Google Scholar
[17]Holdgrün, H. S., ‘Fastautomorphe Funktionen auf komplexen Räumen’, Math. Ann. 203 (1973), 3564.CrossRefGoogle Scholar
[18]Jarchow, H., Locally convex spaces (Teubner, Stuttgart, 1981).CrossRefGoogle Scholar
[19]Köthe, G., Topological vector spaces, 1 (Springer, Berlin, 1969).Google Scholar
[20]Kürschák, J., ‘Über Limesbildung und allgemeine Körpertheorie’, J. Reine Angew. Math. 142 (1913), 211253.CrossRefGoogle Scholar
[21]Ostrowski, A., ‘Über Folgen analytischer Funktionen und einige Verschärfungen des Picardschen Statzes’, Math. Z. 24 (1926), 215258.CrossRefGoogle Scholar
[22]Remmert, R., Theory of complex functions (Springer, New York, 1991).CrossRefGoogle Scholar
[23]Remmert, R., Funktionentheorie, II (Springer, Berlin, 1991).CrossRefGoogle Scholar
[24]Rudin, W., Real and complex analysis, 3rd edition (McGraw-Hill, New York, 1987).Google Scholar
[25]Tietz, H., ‘Zur Klassifizierung meromorpher Funktionen auf Riemannschen Flächen’, Math. Ann. 142 (1961), 441449.CrossRefGoogle Scholar
[26]Tietz, H., Private communication.Google Scholar
[27]Vakher, F. S. and Ryndina, V. V., ‘Algebras of meromorphic functions’, in: Mathematical analysis and its applications (Rostov State University, Rostov-on-Don, 1981), pp. 2333 (in Russian).Google Scholar
[28]Waelbroeck, L., Topological vector spaces and algebras (Springer, Berlin, 1971).Google Scholar
[29]Warner, S., Topological fields (North-Holland, Amsterdam, 1989).Google Scholar
[30]Wieslaw, W., Topological fields (Marcel Dekkar, New York, 1988).Google Scholar
[31]Williamson, J. H., ‘On topologising the field C(t)’, Proc. Amer. Math. Soc. 5 (1954), 729734.Google Scholar
[32]Zakharyuta, V. P. and Matvienko, A. I., ‘On bases in spaces of meromorphic functions with given poles’, in: Mathematical analysis and its applications (Rostov State University, Rostov-on-Don, 1981) pp. 5560 (in Russian).Google Scholar