Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T09:04:48.614Z Has data issue: false hasContentIssue false

LIFTS OF PARTIAL CHARACTERS WITH CYCLIC DEFECT GROUPS

Published online by Cambridge University Press:  22 November 2010

JAMES P. COSSEY*
Affiliation:
Department of Theoretical and Applied Mathematics, University of Akron, Akron, OH 44325, USA (email: cossey@uakron.edu)
MARK L. LEWIS
Affiliation:
Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA (email: lewis@math.kent.edu)
*
For correspondence; e-mail: cossey@uakron.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We count the number of lifts of an irreducible π-partial character that lies in a block with a cyclic defect group.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Cliff, G. H., ‘On modular representations of p-solvable groups’, J. Algebra 47 (1977), 129137.CrossRefGoogle Scholar
[2]Cossey, J. P., ‘Bounds on the number of lifts of a Brauer character in a p-solvable group’, J. Algebra 312 (2007), 699708.CrossRefGoogle Scholar
[3]Cossey, J. P., ‘Vertices and normal subgroups in solvable groups’, J. Algebra 321 (2009), 29622969.CrossRefGoogle Scholar
[4]Dade, E. C., ‘Extending endo-permutation modules’, Preprint.Google Scholar
[5]Dade, E. C., ‘A correspondence of characters’, Proc. Sympos. Pure Math. 37 (1980), 401403.CrossRefGoogle Scholar
[6]Dornhoff, L., Group Representation Theory Part B (Marcel Dekker, New York, 1972).Google Scholar
[7]Erdmann, K., ‘Blocks and simple modules with cyclic vertices’, Bull. Lond. Math. Soc. 9 (1977), 216218.CrossRefGoogle Scholar
[8]Feit, W. and Thompson, J., ‘Groups which have a faithful representation of degree less than (p−1)/2’, Pacific J. Math. 11 (1961), 12571262.CrossRefGoogle Scholar
[9]Gajendragadkar, D., ‘A characteristic class of characters of finite π-separable groups’, J. Algebra 59 (1979), 237259.CrossRefGoogle Scholar
[10]Hai, J., ‘The extension of the first main theorem for π-blocks’, Sci. China Ser. A 49 (2006), 620625.CrossRefGoogle Scholar
[11]Isaacs, I. M., ‘Fong characters in π-separable groups’, J. Algebra 99 (1986), 89107.CrossRefGoogle Scholar
[12]Isaacs, I. M., ‘Partial characters of π-separable groups’, in: Representation Theory of Finite Groups and Finite Dimensional Algebras (Bielefield, 1991), Progress in Mathematics, 95 (Birkhäuser, Basel, 1991), pp. 273287.CrossRefGoogle Scholar
[13]Isaacs, I. M. and Navarro, G., ‘Weights and vertices for characters of π-separable groups’, J. Algebra 177 (1995), 339366.CrossRefGoogle Scholar
[14]Manz, O. and Wolf, T. R., Representations of Solvable Groups, London Mathematical Society Lecture Notes Series, 185 (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
[15]Navarro, G., Characters and Blocks of Finite Groups (Cambridge University Press, Cambridge, 1998).CrossRefGoogle Scholar
[16]Puig, L., ‘Local extensions in endo-permutation modules split: a proof of Dade’s theorem’, in: Seminaire sur les Groupes Finis (Seminaire Claude Chevalley), Tome III, Publications Mathématiques de l’Université Paris VII, 25 (Univ. Paris VII, Paris, 1986), pp. 199205.Google Scholar
[17]Slattery, M. C., ‘Pi-blocks of pi-separable groups, I’, J. Algebra 102 (1986), 6077.CrossRefGoogle Scholar
[18]Slattery, M. C., ‘Pi-blocks of pi-separable groups, II’, J. Algebra 124 (1989), 236269.CrossRefGoogle Scholar
[19]Turull, A., ‘Above the Glauberman correspondence’, Adv. Math. 217 (2008), 21702205.CrossRefGoogle Scholar