Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T10:49:23.627Z Has data issue: false hasContentIssue false

L1-convergence of Fourier series

Published online by Cambridge University Press:  09 April 2009

Chang-Pao Chen
Affiliation:
Department of Mathematics, Stanford University, Stanford, California 94305, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For an integrable function f on T, we introduce a modified partial sum and establish its L1-convergence property. The relation between the sum and L1-convergence classes is also established. As a corollary, a new L1-convergence class is obtained. It is shown that this class covers all known L1-convergence classes.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1986

References

[1]Bojanic, R. and Stanojević, Č. V., ‘A class of L1-convergence’, Trans. Amer. Math. Soc. 269 (1982), 677683.CrossRefGoogle Scholar
[2]Bray, W. O., ‘On a Tauberian theorem for the L1-convergence of Fourier sine series’, Proc. Amer. Math. Soc. 88 (1983), 3438.Google Scholar
[3]Bray, W. O. and Stanojević, Č. V., ‘Tauberian L1-convergence classes of Fourier series I’, Trans. Amer. Math. Soc. 275 (1983), 5969.Google Scholar
[4]Edwards, R. E., Fourier series, a modern introduction (2 Vols., Holt, Rinehart and Winston, New York, 1967).Google Scholar
[5]Fomin, G. A., ‘On convergence of Fourier series in the L-metric’ (Applications of Functional Analysis in Approximation Theory, Proc. Meeting at Kalinin, 1970, pp. 170–173 (Russian)).Google Scholar
[6]Fomin, G. A., ‘A class of trigonometric series’, Mat. Zametki 23 (1978), 213222.Google Scholar
[7]Garrett, J. W. and Stanojević, Č. V., ‘On L1-convergence of certain cosine sums’, Proc. Amer. Math. Soc. 54 (1976), 101105.Google Scholar
[8]Garrett, J. W., ‘Necessary and sufficient conditions for L1-convergence of trigonometric series’, Proc. Amer. Math. Soc. 60 (1976), 6871.Google Scholar
[9]Garrett, J. W., Rees, C. S. and Stanojević, Č. V., ‘On L1-convergence of Fourier series with quasi-monotone coefficients’, Proc. Amer. Math. Soc. 72 (1978), 535538.Google Scholar
[10]Goldberg, R. R. and Stanojević, Č. V., ‘L1-convergence and Segal algebras of Fourier series’, preprint (1980).Google Scholar
[11]Hille, E. and Tamarkin, J. D., ‘On the summability of Fourier series II’, Ann. Math. (2) 34 (1933), 329348.CrossRefGoogle Scholar
[12]Karamata, J., Teorija i praksa Stieltjes-ova integrala (Srpska Akademija Nauka, Beograd, 1949).Google Scholar
[13]Katznelson, Y., An introduction to harmonic analysis (John Wiley and Sons, New York, 1968).Google Scholar
[14]Kolmogorov, A. N., ‘Sur l'ordre de grandeur des coefficients de la sèrie de Fourier-Lebesgue’, Bull. Acad. Polon. Sér. Sci. Math. Astronom. Phys. (1923), 8386.Google Scholar
[15]Stanojević, Č. V., ‘Classes of L1-convergence of Fourier and Fourier-Stieltjes series’, Proc. Amer. Math. Soc. 82 (1981), 209215.Google Scholar
[16]Stanojević, Č. V., ‘Tauberian conditions for L1-convergence of Fourier series’, Trans. Amer. Math. Soc. 271 (1982), 237244.Google Scholar
[17]Telyakovskii, S. A., ‘On a sufficient condition of Sidon for the integrability of trigonometric series’, Mat. Zametki 14 (1973), 317328.Google Scholar
[18]Telyakovskii, S. A. and Fomin, G. A., ‘On the convergence in the L-metric of Fourier series with quasi-monotone coefficients’, Trudy Mat. Inst. Acad. Sci. USSR, 134 (1975), 310313 (Russian).Google Scholar
[19]Zygmund, A., Trigonometric series (Cambridge Univ. Press, 1959).Google Scholar