Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T10:00:59.819Z Has data issue: false hasContentIssue false

The inner and outer space of 2-dimensional Laguerre planes

Published online by Cambridge University Press:  09 April 2009

B. Polster
Affiliation:
Department of Mathematics and Statistics University of CanterburyChristchurchNew Zealand e-mail: bmp and gfs@math.canterbury.ac.nz
G. F. Steinke
Affiliation:
Department of Mathematics and Statistics University of CanterburyChristchurchNew Zealand e-mail: bmp and gfs@math.canterbury.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The classical 2-dimensional Laguerre plane is obtained as the geometry of non-trivial plane sections of a cylinder in R3 with a circle in R2 as base. Points and lines in R3 define subsets of the circle set of this geometry via the affine non-vertical planes that contain them. Furthemore, vertical lines and planes define partitions of the circle set via the points and affine non-vertical lines, respectively, contained in them.

We investigate abstract counterparts of such sets of circles and partitions in arbitrary 2-dimensional Laguerre planes. We also prove a number of related results for generalized quadrangles associated with 2-dimensional Laguerre planes.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1997

References

[AG]Artzy, R. and Groh, H., ‘Laguerre and Minkowski planes produced by dilatations’, J. Geom. 26 (1986), 120.CrossRefGoogle Scholar
[Bo]Bonisoli, A., ‘On resolvable finite Minkowski planes’, J. Geom. 36 (1989), 17.CrossRefGoogle Scholar
[Fo]Forst, M., ‘Topologische 4-Gone’, Mitt. Math. Sem. Giessen 147 (1981), 65129.Google Scholar
[Gr1]Groh, H., ‘Topologische Laguerreebenen I’, Abh. Math. Sem. Univ. Hamburg 32 (1968), 216231.CrossRefGoogle Scholar
[Gr2]Groh, H., ‘Topologische Laguerreebenen II’, Abh. Math. Sem. Univ. Hamburg 34 (1970), 1121.CrossRefGoogle Scholar
[Gr3]Groh, H., ‘Ovals and non-ovoidal Laguerre planes’, J. Reine Angew. Math. 267 (1974), 5066.Google Scholar
[Gr4]Groh, H., ‘Flat Moebius and Laguerre planes’, Abh. Math. Sem. Univ. Hamburg 40 (1974), 6476.CrossRefGoogle Scholar
[Ha]Hartmann, E., ‘Moulton Laguerre-Ebenen’, Arch. Math. 27 (1976), 424435.CrossRefGoogle Scholar
[Kl]Kleinewillinghöfer, R., Eine Klassifikation der Laguerre-Ebenen (Dissertation, Darmstadt, 1979).Google Scholar
[LP]Löwen, R. and Pfüller, U., ‘Two-dimensional Laguerre planes over convex functions’, Geom. Dedicata 23 (1987), 7385.CrossRefGoogle Scholar
[Mäu]Mäurer, H., ‘Eine Kennzeichnung halbovoidaler Laguerre-Geometrien’, J. Reine Angew. Math. 253, 203213.Google Scholar
[Mou]Moulton, F. R., ‘A simple non-desarguesian plane geometry’, Trans. Amer. Math. Soc. 3 (1902), 192195.CrossRefGoogle Scholar
[PT1]Payne, S. E. and Thas, J. A., ‘Generalized quadrangles with symmetry’, Simon Stevin 49 (1970), 332 and 81–103.Google Scholar
[PT2]Payne, S. E. and Thas, J. A., Finite Generalized Quadrangles, Research Notes in Math. 110 (Pitman, Boston, 1984).Google Scholar
[Po]Polster, B., ‘Semi-biplanes on the cylinder’, Geom. Dedicata 58 (1995), 145160.CrossRefGoogle Scholar
[PRS]Polster, B., Rosehr, N. and Steinke, G. F., ‘Halfovoidal Laguerre planes’, J. Geom., to appear.Google Scholar
[PS1]Polster, B. and Steinke, G. F., ‘Criteria for two-dimensional circle planes’, Beiträge Algebra Geom. 35 (1994), 181191.Google Scholar
[PS2]Polster, B. and Steinke, G. F., ‘Cut and paste in 2-dimensional circle planes’, Can. Math. Bull 38 (1995), 469480.CrossRefGoogle Scholar
[Ro]Rosehr, N., ‘Flock in 2-dimensional circle planes’, (preprint).Google Scholar
[Sa]Salzmann, H., ‘Topological planes’, Adv. Math. 2 (1967), 160.CrossRefGoogle Scholar
[Sch1]Schroth, A. E., ‘Three-dimensional quadrangles and flat Laguerre planes’, J. Geom. 36 (1990). 365373.Google Scholar
[Sch2]Schroth, A. E., ‘The Appolonius Problem in flat Laguerre planes’, J. Geom. 42 (1991), 141147.CrossRefGoogle Scholar
[Sch3]Schroth, A. E., Topological circle planes and topological quadrangles (Habilitationsschrift, Technische Universität Braunschweig, 1994).Google Scholar
[Sch4]Schroth, A. E., ‘The Appolonius problem in four-dimensional Laguerre planes’, J. Geom. 51 (1994), 138149.CrossRefGoogle Scholar
[St1]Steinke, G. F., ‘Topological affine planes composed of two Desarguesian halfplanes and projective planes with trivial collineation group’, Arch. Math. 44 (1985), 472480.CrossRefGoogle Scholar
[St2]Steinke, G. F., ‘Semiclassical topological flat Laguerre planes obtained by pasting along a circle’, Resultate Math. 12 (1987), 207221.CrossRefGoogle Scholar
[St3]Steinke, G. F., ‘Semiclassical topological flat Laguerre planes obtained by pasting along two parallel classes’, J. Geom. 32 (1988). 133156.CrossRefGoogle Scholar
[Th]Thas, J. A., ‘Circle Geometries and generalized quadrangles’, in: Finite geometries (Winnipeg, Man., 1984), Lecture Notes Pure Appl. Math. 103 (Dekker, New York, 1985) pp. 327352.Google Scholar
[Val]Valette, G., ‘Structures d'ovale topologique sur le cercle’, Bull. Acad. R. Belg. 51 (1965), 586597.Google Scholar