Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T18:30:36.970Z Has data issue: false hasContentIssue false

Initial and relative limiting behaviour of temperatures on a strip

Published online by Cambridge University Press:  09 April 2009

N. A. Watson
Affiliation:
Department of Mathematics University of CanterburyChristchurch, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let u be a solution of the heat equation which can be written as the difference of two non-negative solutions, and let v be a non-negative solution. A study is made of the behaviour of u(x, t)/v(x, t) as t → 0+. The methods are based on the Gauss-Weierstrass integral representation of solutions on Rn × ]0, a[ and results on the relative differentiation of measures, which are employed in a novel way to obtain several domination, non-negativity, uniqueness and representation theorems.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1982

References

1.Besicovitch, A. S., ‘A general form of the covering principle and relative differentiation of additive functions’, Proc. Cambridge Philos. Soc. 41 (1945), 103110.CrossRefGoogle Scholar
2.Besicovitch, A. S., ‘A general form of the covering principle and relative differentiation of additive functions. II’, Proc. Cambridge Philos. Soc. 42 (1946), 110.CrossRefGoogle Scholar
3.Brelot, M., ‘Remarques sur les zéros à la frontière des fonctions harmomques positives’, Boll. Un. Mat. Ital. 12 (1975), 314319.Google Scholar
4.Bruckner, A. M., Lohwater, A. J. and Ryan, F., ‘Some non-negativity theorems for harmonic functions’, Ann. Acad. Sci. Fenn. Ser. A. I. Math. Dissertationes 452 (1969).Google Scholar
5.Doob, J. L., ‘Relative limit theorems in analysis’, J. Analyse Math. 8 (1960/1961), 289306.CrossRefGoogle Scholar
6.Gehring, F. W., ‘The boundary behavior and uniqueness of solutions of the heat equation’, Trans. Amer. Math. Soc. 94 (1960), 337364.Google Scholar
7.Guenther, R., ‘Representation theorems for linear second-order parabolic partial differential equations’, J. Math. Anal. Appl. 17 (1967), 488501.CrossRefGoogle Scholar
8.Hall, R. L., ‘On the asymptotic behaviour of functions holomorphic in the unit disc’, Math. Z. 107 (1968), 357362.CrossRefGoogle Scholar
9.Hirschman, I. I. and Widder, D. V., The convolution transform (Princeton University Press, Princeton, N. J., 1955).Google Scholar
10.Kuran, Ü., ‘Some extension theorems for harmonic, superharmonic and holomorphic functions’, J. London Math. Soc. 22 (1980), 269284.CrossRefGoogle Scholar
11.Krzyżański, M., ‘Sur les solutions non négatives de l'équation linéaire normale parabolique’, Rev. Roumaine Math. Pures Appl. 9 (1964), 393408.Google Scholar
12.Lohwater, A. J., ‘A uniqueness theorem for a class of harmonic functions’, Proc. Amer. Math. Soc. 3 (1952), 278279.CrossRefGoogle Scholar
13.Rosenbloom, P. C., ‘Linear equations of parabolic type with constant coefficients’, Contributions to the theory of partial differential equations (Princeton University Press, Princeton, N. J., 1954, 191200).Google Scholar
14.Watson, N. A., ‘Classes of subtemperatures on infinite strips’, Proc. London Math. Soc. 27 (1973), 723746.CrossRefGoogle Scholar
15.Watson, N. A., ‘Differentiation of measures and initial values of temperatures’, J. London Math. Soc. 16 (1977), 271282.CrossRefGoogle Scholar
16.Watson, N. A., ‘Thermal capacity’, Proc. London Math. Soc. 37 (1978), 342362.CrossRefGoogle Scholar
17.Watson, N. A., ‘Uniqueness and representation theorems for the inhomogeneous heat equation’, J. Math. Anal. Appl. 67 (1979), 513524.CrossRefGoogle Scholar
18.Watson, N. A., ‘Positive thermic majorization of temperatures on infinite strips’, J. Math. Anal. Appl. 68 (1979), 477487.CrossRefGoogle Scholar
19.Watson, N. A., ‘Initial singularities of Gauss-Weierstrass integrals and their relations to Laplace transforms and Hausdorff measures’, J. London Math. Soc. 21 (1980), 336350.CrossRefGoogle Scholar