Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:46:37.971Z Has data issue: false hasContentIssue false

Finitely generated residually torsion-free nilpotent groups. I

Published online by Cambridge University Press:  09 April 2009

Gilbert Baumslag
Affiliation:
Department of Mathematics City College of New YorkNew York, NY 10031, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The object of this paper is to study the sequence of torsion-free ranks of the quotients by the terms of the lower central series of a finitely generated group. This gives rise to the introduction into the study of finitely generated, residually torison-free nilpotent groups of notions relating to the Gelfand-Kirillov dimension. These notions are explored here. The main result concerning the sequences alluded to is the proof that there are continuously many such sequences.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Alperin, R. C. and Peterson, B. L., ‘Growth functions for residually torsion-free nilpotent groups’, Proc. Amer. Math. Soc. 109 (1990), 585587.CrossRefGoogle Scholar
[2]Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra (Addison-Wesley, Reading, 1969).Google Scholar
[3]Baumslag, G., ‘On generalized free products’, Math. Z. 78 (1962), 423438.CrossRefGoogle Scholar
[4]Baumslag, G., ‘Reflections on metabelian groups’, Contemp. Math. 109 (1990), 19.CrossRefGoogle Scholar
[5]Baumslag, G., ‘Musings on Magnus’, Contemp. Math. 169 (1994), 99106.CrossRefGoogle Scholar
[6]Baumslag, G., ‘Finitely generated residually torsion-free nilpotent groups. II’, Technical Report.Google Scholar
[7]Blackburn, N., ‘Conjugacy in nilpotent groups’, Proc. Amer. Math. Soc. 16 (1965), 143148.CrossRefGoogle Scholar
[8]Cohn, P. M., Free rings and their relations (Academic Press, London, 1971).Google Scholar
[9]Gromov, M., ‘Hyperbolic groups’, in: Essays on group theory (ed. Gersten, S. M.), Math. Sci. Res. Inst. Publ. 8 (Springer, New York, 1987).Google Scholar
[10]Groves, J. R. J. and Wilson, J. S., ‘Finitely presented metanilpotent groups’, J. London Math. Soc. 50 (1994), 87104.CrossRefGoogle Scholar
[11]Gruenberg, K. W., ‘Residual properties of infinite soluble groups’, Proc. London Math. Soc. (3) 7 (1957), 2962.CrossRefGoogle Scholar
[12]Hall, P., ‘Finiteness conditions for soluble groups’, Proc. London Math. Soc. (3) 4 (1954), 419436.Google Scholar
[13]Jennings, S. A., ‘The group ring of a class of infinite nilpotent groups’, Canad. J. Math., 7 (1955), 169187.CrossRefGoogle Scholar
[14]Krause, G. R. and Lenagan, T. H., Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Math. 166 (Pitman, Berlin, 1985).Google Scholar
[15]Kurosh, A. G., The theory of groups I, II, 2nd edition, translated and edited by Hirsch, K. A. (Chelsea, New York, 1960).Google Scholar
[16]Lichtman, A. I., ‘The residual nilpotence of the multiplicative group of a skew field generated by universal enveloping algebras’, J. Algebra 112 (1988), 250263.CrossRefGoogle Scholar
[17]Magnus, W., ‘Beziehunngen zwischen Gruppen und Idealen in einem speziellen Ring’, Math. Ann. 111 (1935), 259280.CrossRefGoogle Scholar
[18]Magnus, W., Karrass, A. and Solitar, D., Combinatorial group theory (Wiley, New York, 1966).Google Scholar
[19]Malčev, A. I., ‘Generalized nilpotent algebras and their associated groups’, Math. Sbornik (N.S.) 25 (67) (1949), 347366.Google Scholar
[20]Miller, C. F., On group-theoretic decision problems and their classification, Ann. of Math. Studies 68 (Princeton University Press, Princeton, 1971).Google Scholar
[21]Miller, C. F., ‘Decision problems for groups-survey and reflections’, in: Algorithms and classification in combinatorial group theory (eds. Baumslag, G. and Miller, C. F. III), Math. Sci. Res. Inst. Publ. 23 (Springer, Berlin, 1990).Google Scholar
[22]Milnor, J., ‘A note on curvature and fundamental groups’, J. Differential Geom. 2 (1968), 17.CrossRefGoogle Scholar
[23]Neumann, B. H., Neumann, H. and Neumann, P., ‘Wreath products and varieties of groups’, Math. Z. 80 (1962), 4462.CrossRefGoogle Scholar
[24]Neumann, H., Varieties of groups, Ergebnisse der Mathematik, Bd. 37 (Springer, New York, 1967).CrossRefGoogle Scholar
[25]Rabin, M. O., ‘Recursive unsolvability of group theoretic problems’, Ann. of Math. (2) 67 (1958), 172194.CrossRefGoogle Scholar
[26]Robinson, D. J. S., A course in the theory of groups, Graduate Texts in Math. 80 (Springer, New York, 1982).CrossRefGoogle Scholar
[27]Segal, D., Polycyclic groups (Cambridge University Press, Cambridge, 1983).CrossRefGoogle Scholar
[28]Specker, E., ‘Additive Gruppen von Folgen ganzer Zahlen’, Portugal. Math. 9 (1950), 131140.Google Scholar