Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T22:14:51.975Z Has data issue: false hasContentIssue false

Dualities for some De Morgan algebras with operators and Lukasiewicz algebras

Published online by Cambridge University Press:  09 April 2009

Roberto Cignoli
Affiliation:
Instituto de MatemáticaUniversidade Estadual de Campinas13.100-Campinas-Sā Paulo-Brazil
Marta S. De Gallego
Affiliation:
Instituto de MatemáticaUniversidade Estadual de Campinas13.100-Campinas-Sā Paulo-Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Algebras (A, ∧, ∨, ~, γ, 0, 1) of type (2,2,1,1,0,0) such that (A, ∧, ∨, ~, γ 0, 1) is a De Morgan algebra and γ is a lattice homomorphism from A into its center that satisfies one of the conditions (i) a ≤ γa or (ii) a ≤ ~ a ∧ γa are considered. The dual categories and the lattice of their subvarieties are determined, and applications to Lukasiewicz algebras are given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1983

References

Balbes, R. and Dwinger, P. (1974), Distributive lattices (University of Missouri Press, Columbia Missouri).Google Scholar
Bialynicki-Birula, A. and Rasiowa, H. (1957), ‘On the representation of quasi-Boolean algebras’, Bull. Acad. Polon. Sci. CI III 5, 259261.Google Scholar
Cignoli, R. (1970), Moisil algebras (Notas de Lógica Matem´tica No. 27, Universidad Nacional del Sur, Bahia Blanca).Google Scholar
Cignoli, R. (1974), Topological representation of Lukasiewicz and post algebras (Notas de Lógica Matemática No. 33, Universidad Nacional del Sur, Bahia Blanca).Google Scholar
Cignoli, R. (1979), ‘Coproducts in the categories of Kleene and Three-valued Lukasiewicz algebras’, Studia Logica 38, 237245.CrossRefGoogle Scholar
Cignoli, R. and de Gallego, M. S. (1981), ‘The lattice structure of some Lukasiewicz algebras’, Algebra Universalis 13, 315328.Google Scholar
Cornish, W. H. (1975), ‘On H. Priestley's dual of the category of bounded distributive lattices’, Mat. Vestnik 12 (27), 329332.Google Scholar
Cornish, W. H. and Fowler, P. R. (1977), ‘Coproducts of De Morgan algebras’, Bull. Austral. Math. Soc. 16, 113.CrossRefGoogle Scholar
Cornish, W. H. and Fowler, P. R. (1979), ‘Coproducts of Kleene algebras’, J. Austral. Math. Soc. Ser A 27, 209220.CrossRefGoogle Scholar
Davey, B. A. (1978), ‘Subdirectly irreducible distributive double p-algebras’, Algebra Universalis 8, 7388.CrossRefGoogle Scholar
Davey, B. A. (1979), ‘On the lattice of subvarieties’, Houston J. Math. 5, 183192.Google Scholar
Jónson, B. (1967), ‘Algebras whose congruence lattices are distributive’, Math. Scand. 21, 110121.Google Scholar
Katrinάk, T. (1974), ‘Injective double Stone algebras’, Algebra Universalis 4, 259267.CrossRefGoogle Scholar
Priestley, H. A. (1970), ‘Representation of distributive lattices by means of ordered Stone spaces’, Bull. London. Math. Soc. 2, 186190.CrossRefGoogle Scholar
Priestley, H. A. (1972), ‘Ordered topological spaces and the representation of distributive lattices’, Proc. London. Math. Soc. (3) 24, 507530.Google Scholar
Priestley, H. A. (1974), ‘Stone lattices: a topological approach’, Fund. Math. 84, 127143.Google Scholar
Priestley, H. A. (1975), ‘The construction of spaces dual to pseudocomplemented distributive lattices’, Quart. J. Math. Oxford Ser. 26, 215228.Google Scholar
Varlet, J. (1968), ‘Algébres de Lukasiewicz trivalentes’, Bull. Soc. Roy. Sci. Liège 36, 399408.Google Scholar