Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T00:11:47.283Z Has data issue: false hasContentIssue false

The distribution of the irreducibles in an algebraic number field

Published online by Cambridge University Press:  09 April 2009

David M. Bradley
Affiliation:
Department of Mathematics and Statistics, University of Maine, Orono, Maine 04469, USA, e-mail: Bradley@math.umaine.edu, ozluk@math.umaine.edu, snyder@math.umaine.edu
Ali E. Özlük
Affiliation:
19 Balsam Drive, Bangor, Maine 04401, USA, e-mail: rebecca.rozario@umit.edu
Rebecca A. Rozario
Affiliation:
19 Balsam Drive, Bangor, Maine 04401, USA, e-mail: rebecca.rozario@umit.edu
C. Snyder
Affiliation:
19 Balsam Drive, Bangor, Maine 04401, USA, e-mail: rebecca.rozario@umit.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the distribution of principal ideals generated by irreducible elements in an algebraic number field.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Bradley, D. M., Özlük, A. E. and Snyder, C., ‘On a class number formula for real quadratic number fields’, Bull. Austral. Math. Soc. 65 (2002), 259270.CrossRefGoogle Scholar
[2]Dummit, D. S. and Foote, R. M., Abstract algebra, 2nd edition (Prentice Hall, Upper Saddle River, NJ, 1999).Google Scholar
[3]Gao, W. D., ‘The structure of two classes of sequences in Z n’, Adv. in Math. (China) 22 (1993), 348353.Google Scholar
[4]Gradshteyn, I. S. and Ryzhik, I. M., Table of integrals, series, and products, 5th edition (Academic Presss, Boston, 1994).Google Scholar
[5]Halter-Kocha, F. and Müller, W., ‘Quantitative aspects of non-unique factoriztion; A general theory with applications to algebraic function fields’, J. Reine Angew. Math. 421 (1991), 159188.Google Scholar
[6]Kaczorowski, J., ‘Some remarks on factorization in algebraic number fields’, Acta Arith. 43 (1983), 5368.CrossRefGoogle Scholar
[7]Landau, E., Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale (Chelsea Pub. Co., New York, 1949).Google Scholar
[8]Lang, S., Algebraic number theory (Addison-Wesley, London, 1970).Google Scholar
[9]Lammermeyer, F., ‘Kuroda's class number formula’, Acta Arith. 66 (1994), 245260.CrossRefGoogle Scholar
[10]Lemmermeyer, F., ‘Ideal class groups of cyclotomic number fields I’, Acta Arith. 72 (1995), 347359.CrossRefGoogle Scholar
[11]Rémond, J. P., ‘Étude asymptotique de certaines partitions dans certaines semi-groups’, Ann. Sci. École Norm. Sup. 83 (1966), 343410.CrossRefGoogle Scholar
[12]Washington, L., Introduction to cyclotomic fields (Springer, New York, 1982).CrossRefGoogle Scholar
[13]Wrench, J. W. Jr,‘Concerning two series for the gamma function’, Math. Comp. 22 (1968), 617626.CrossRefGoogle Scholar