Hostname: page-component-7f64f4797f-tldsr Total loading time: 0.001 Render date: 2025-11-11T00:31:41.175Z Has data issue: false hasContentIssue false

DEFORMATION OF FELL BUNDLES

Published online by Cambridge University Press:  31 October 2025

ALCIDES BUSS
Affiliation:
Departamento de Matemática, Universidade Federal de Santa Catarina, 88.040-900 Florianópolis-SC, Brazil e-mail: alcides.buss@ufsc.br
SIEGFRIED ECHTERHOFF*
Affiliation:
Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany

Abstract

In this paper we study deformations of $C^*$-algebras that are given as cross-sectional $C^*$-algebras of Fell bundles $\mathcal A$ over locally compact groups G. Our deformation comes from a direct deformation of the Fell bundles $\mathcal A$ via certain parameters, such as automorphisms of the Fell bundle, group cocycles, or central group extensions of G by the circle group $\mathbb T$, and then taking cross-sectional algebras of the deformed Fell bundles. We then show that this direct deformation method is equivalent to the deformation via the dual coactions by similar parameters as studied previously in [4, 7].

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 427320536 SFB 1442 and under Germany’s Excellence Strategy EXC 2044 390685587, Mathematics Münster: Dynamics, Geometry, Structure; and by CNPq/CAPES/Humboldt – Brazil.

Communicated by Dana P. Williams

Dedicated to the memory of Iain Raeburn (1949–2023)

References

Abadie, B. and Exel, R., ‘Deformation quantization via Fell bundles’, Math. Scand. 89(1) (2001), 135160, available at http://www.mscand.dk/article/view/14335.10.7146/math.scand.a-14335CrossRefGoogle Scholar
Abadie, F., ‘Tensor products of Fell bundles over groups’, Preprint, 1997, arXiv:functan/9712006.Google Scholar
Abadie, F., ‘Enveloping actions and Takai duality for partial actions’, J. Funct. Anal. 197(1) (2003), 1467; doi:10.1016/S0022-1236(02)00032-0.CrossRefGoogle Scholar
Bhowmick, J., Neshveyev, S. and Sangha, A., ‘Deformation of operator algebras by Borel cocycles’, J. Funct. Anal. 265 (2013), 9831001.10.1016/j.jfa.2013.05.021CrossRefGoogle Scholar
Buss, A. and Echterhoff, S., ‘Universal and exotic generalized fixed-point algebras for weakly proper actions and duality’. Indiana Univ. Math. J. 63(6) (2014), 16591701.10.1512/iumj.2014.63.5405CrossRefGoogle Scholar
Buss, A. and Echterhoff, S., ‘Maximality of dual coactions on sectional ${}^{\ast }$ -algebras of Fell bundles and applications’, Studia Math. 229(3) (2015), 233262; doi:10.4064/sm8361-1-2016.Google Scholar
Buss, A. and Echterhoff, S., ‘A new approach to deformation of ${C}^{\ast }$ -algebras via coactions’, Studia Math., to appear. Published online (10 February 2025).10.4064/sm240208-25-9CrossRefGoogle Scholar
Buss, A., Echterhoff, S. and Willett, R., ‘Exotic crossed products and the Baum-Connes conjecture’, J. reine angew. Math. 740 (2018), 111159; doi:10.1515/crelle-2015-0061.CrossRefGoogle Scholar
Buss, A. and Meyer, R., ‘Iterated crossed products for groupoid fibrations’, Preprint, 2016, arXiv:1604.02015.Google Scholar
Buss, A. and Meyer, R., ‘Crossed products for actions of crossed modules on ${}^{\ast }$ -algebras’, J. Noncommut. Geom. 11(3) (2017), 11951235; doi:10.4171/JNCG/11-3-12.CrossRefGoogle Scholar
Crocker, D., Kumjian, A., Raeburn, I. and Williams, D. P., ‘An equivariant Brauer group and actions of groups on ${\mathrm{C}}^{\ast }$ -algebras’, J. Funct. Anal. 146(1) (1997), 151184; doi:10.1006/jfan.1996.3010.CrossRefGoogle Scholar
Doran, R. S. and Fell, J. M. G., Representations of ${}^{\ast }$ -algebras, Locally Compact Groups, and Banach ${}^{\ast }$ -algebraic Bundles. Volume 1, Pure and Applied Mathematics, 125 (Academic Press Inc., Boston, MA, 1988).Google Scholar
Doran, R. S. and Fell, J. M. G., Representations of ${}^{\ast }$ -algebras, Locally Compact Groups, and Banach ${}^{\ast }$ -algebraic Bundles. Volume 2, Pure and Applied Mathematics, 126 (Academic Press Inc., Boston, MA, 1988).Google Scholar
Echterhoff, S., Kaliszewski, S., Quigg, J. and Raeburn, I., ‘A categorical approach to imprimitivity theorems for ${\mathrm{C}}^{\ast }$ -dynamical systems’, Mem. Amer. Math. Soc. 180(850) (2006), viii+169; doi:10.1090/memo/0850.Google Scholar
Exel, R., Partial Dynamical Systems, Fell Bundles and Applications, Mathematical Surveys and Monographs, 224 (American Mathematical Society, Providence, RI, 2017).10.1090/surv/224CrossRefGoogle Scholar
Exel, R. and Ng, C.-K., ‘Approximation property of ${\mathrm{C}}^{\ast }$ -algebraic bundles’, Math. Proc. Cambridge Philos. Soc. 132(3) (2002), 509522; doi:10.1017/S0305004101005837.CrossRefGoogle Scholar
Feldman, J. and Greenleaf, F. P., ‘Existence of Borel transversals in groups’, Pacific J. Math. 25 (1968), 455461.10.2140/pjm.1968.25.455CrossRefGoogle Scholar
Gleason, A. M., ‘Spaces with a compact Lie group of transformations’, Proc. Amer. Math. Soc. 1 (1950), 3543; doi:10.2307/2032430.CrossRefGoogle Scholar
Hurder, S., Olesen, D., Raeburn, I. and Rosenberg, J., ‘The Connes spectrum for actions of abelian groups on continuous-trace algebras’, Ergodic Theory Dynam. Systems 6(4) (1986), 541560; doi:10.1017/S0143385700003680.CrossRefGoogle Scholar
Kaliszewski, S., Landstad, M. B. and Quigg, J., ‘Tensor-product coaction functors’, J. Aust. Math. Soc. 112(1) (2022), 5267; doi:10.1017/S1446788720000063.CrossRefGoogle Scholar
Kaliszewski, S. P., Muhly, P. S., Quigg, J. and Williams, D. P., ‘Fell bundles and imprimitivity theorems’, Münster J. Math. 6 (2013), 5383, available at http://nbn-resolving.de/urn:nbn:de:hbz:6-25319580780.Google Scholar
Kasprzak, P., ‘Rieffel deformation via crossed products’, J. Funct. Anal. 257(5) (2009), 12881332.10.1016/j.jfa.2009.05.013CrossRefGoogle Scholar
Kasprzak, P., ‘Rieffel deformation of group coactions’, Comm. Math. Phys. 300(3) (2010), 741763; doi:10.1007/s00220-010-1093-9.CrossRefGoogle Scholar
LaLonde, S. M., ‘Some consequences of the stabilization theorem for Fell bundles over exact groupoids’, J. Operator Theory 81(2) (2019), 335369; doi:10.7900/jot.2018feb08.2195.CrossRefGoogle Scholar
Moore, C. C., ‘Extensions and low dimensional cohomology theory of locally compact groups. II’, Trans. Amer. Math. Soc. 113 (1964), 6486; doi:10.2307/1994090.Google Scholar
Neshveyev, S. and Tuset, L., ‘Deformation of ${C}^{\ast }$ -algebras by cocycles on locally compact quantum groups’, Adv. Math. 254 (2014), 454496; doi:10.1016/j.aim.2013.12.025.CrossRefGoogle Scholar
Ng, C.-K., ‘Discrete coactions on ${\mathrm{C}}^{\ast }$ -algebras’, J. Aust. Math. Soc. Ser. A 60(1) (1996), 118127.10.1017/S1446788700037423CrossRefGoogle Scholar
Nilsen, M., ‘Duality for full crossed products of ${C}^{\ast }$ -algebras by non-amenable groups’, Proc. Amer. Math. Soc. 126(10) (1998), 29692978; doi:10.1090/S0002-9939-98-04598-5.CrossRefGoogle Scholar
Nilsen, M., ‘Full crossed products by coactions, ${C}_0(X)$ -algebras and ${C}^{\ast }$ -bundles’, Bull. Lond. Math. Soc. 31(5) (1999), 556568; doi:10.1112/S0024609399005883.CrossRefGoogle Scholar
Quigg, J. C., ‘Landstad duality for ${C}^{\ast }$ -coactions’, Math. Scand. 71(2) (1992), 277294; doi:10.7146/math.scand.a-12429.CrossRefGoogle Scholar
Quigg, J. C., ‘Discrete ${C}^{\ast }$ -coactions and ${C}^{\ast }$ -algebraic bundles’, J. Aust. Math. Soc. Ser. A 60(2) (1996), 204221.10.1017/S1446788700037605CrossRefGoogle Scholar
Raeburn, I., ‘Deformations of Fell bundles and twisted graph algebras’, Math. Proc. Cambridge Philos. Soc. 161(3) (2016), 535558; doi:10.1017/S0305004116000359.CrossRefGoogle Scholar
Rieffel, M. A., ‘Deformation quantization for actions of Rd’, Mem. Amer. Math. Soc. 106(506) (1993), x+93; doi:10.1090/memo/0506.Google Scholar
Rieffel, M. A., ‘ $\mathrm{K}$ -groups of ${\mathrm{C}}^{\ast }$ -algebras deformed by actions of Rd’, J. Funct. Anal. 116(1) (1993), 199214; doi:10.1006/jfan.1993.1110.CrossRefGoogle Scholar
Williams, D. P., Crossed Products of ${C}^{\ast }$ -algebras, Mathematical Surveys and Monographs, 134 (American Mathematical Society, Providence, RI, 2007).Google Scholar
Yamashita, M., ‘Deformation of algebras associated with group cocycles’, J. Noncommut. Geom. 17(4) (2023), 11451166; doi:10.4171/jncg/522.CrossRefGoogle Scholar