Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T15:08:18.708Z Has data issue: false hasContentIssue false

Compactness of subsets of Tychonoff sets via exponential laws

Published online by Cambridge University Press:  09 April 2009

Pedro Morales
Affiliation:
Université de Sherbrooke Sherbrooke, Québec, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using the exponential map in multifunction context, the paper deduces a system of non-Hausdorff theorems which generalize all known Ascoli theorems for the space of continuous functions and the space of point-compact continuous multifunctions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1983

References

[1]Arens, R., ‘A topology for spaces of transformations’, Ann. of Math. 47 (1946), 480495.CrossRefGoogle Scholar
[2]Bagley, R. W. and Yang, J. S., ‘On k-spaces and function spaces’, Proc. Amer. Math. Soc. 17 (1966), 703705.Google Scholar
[3]Berge, C., Topological spaces (Macmillan Company, New York, 1965).Google Scholar
[4]Fox, G. and Morales, P., ‘A non-Hausdorff Ascoli theorem for k3-spaces’, Proc. Amer. Math. Soc. 39 (1973), 633636.Google Scholar
[5]Gale, D., ‘Compact sets of functions, and function rings’, Proc. Amer. Math. Soc. 1 (1950), 303308.CrossRefGoogle Scholar
[6]Glicksberg, I., ‘Representation of functionals by integrals’, Duke Math. J. 19 (1952), 253282.CrossRefGoogle Scholar
[7]Hager, A. W. and Mrówka, S. G., ‘Compactness and the projection mapping from a product space’, Notices Amer. Math. Soc. 12 (1965), 368 (abstract 65T-167).Google Scholar
[8]Hewitt, E., ‘Rings of real-valued continuous functions I’, Trans. Amer. Math. Soc. 64 (1948), 4599.CrossRefGoogle Scholar
[9]Kaul, S. K., ‘Compact subsets in function spaces’, Canad. Math. Bull. 12 (1969), 461466.CrossRefGoogle Scholar
[10]Kelley, J., General topology (C. Van Nostrand, New York, 1965).Google Scholar
[11]Levine, N., ‘Generalized closed sets in topology’, Rend. Circ. Mat. Palermo Ser. (2) 19 (1970), 8996.CrossRefGoogle Scholar
[12]Mancuso, V. J., ‘An Ascoli theorem for multivalued functions’, J. Austral. Math. Soc. 12 (1971), 466472.CrossRefGoogle Scholar
[13]Michael, E., ‘Topologies on spaces of subsets’, Trans. Amer. Math. Soc. 71 (1951), 152182.CrossRefGoogle Scholar
[14]Morales, P., ‘Non-Hausdorff Ascoli theory’, Dissertationes Math. 119 (1974), 137.Google Scholar
[15]Morales, P., ‘A non-Hausdorff multifunction Ascoli theorem for k3-spaces’, Canad. J. Math. 27 (1975), 893900.CrossRefGoogle Scholar
[16]Mrówka, S. G., ‘Compactness and product spaces’, Colloq. Math. 7 (1959), 1922.CrossRefGoogle Scholar
[17]Myers, S. B., ‘Equicontinuous sets of mappings’, Ann. of Math. 47 (1946), 496502.CrossRefGoogle Scholar
[18]Noble, N., ‘Ascoli theorems and the exponential map’, Trans. Amer. Soc. 143 (1969), 393411.CrossRefGoogle Scholar
[19]Noble, N., ‘The continuity of functions on Cartesian products’, Trans. Amer. Math. Soc. 149 (1970), 187198.CrossRefGoogle Scholar
[20]Pu, H. W., ‘Another Ascoli theorem for multi-valued functions’, Bull. Inst. Math. Acad. Sinica 1 (1973), 145153.Google Scholar
[21]Smithson, R. E., ‘Topologies on sets of relations’, J. Natur. Sci. and Math. (Lahore) 11 (1971), 4350.Google Scholar
[22]Smithson, R. E., ‘Uniform convergence for multifunctions’, Pacific J. Math. 39 (1971), 253259.CrossRefGoogle Scholar