No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
Let (Хζ,λ) be a σ-finite measure space, and let ϕ be a non-singular measurable transformation from X into itself. Then a composition transformation Cϕ on L2(λ) is defined by Cϕf = f ∘ ϕ. If Cϕ is a bounded operator, then it is called a composition operator. The space L2(λ) is said to admit compact composition operators if there exists a ϕ such that Cϕ is compact. This note is a report on the spaces which admit or which do not admit compact composition operators.