Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:43:37.210Z Has data issue: false hasContentIssue false

COMMUTING PROPERTIES OF EXT

Published online by Cambridge University Press:  25 February 2013

PHILL SCHULTZ*
Affiliation:
School of Mathematics and Statistics, The University of Western Australia, Nedlands 6009, Australia email phill.schultz@uwa.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterize the abelian groups $G$ for which the functors $\mathrm{Ext} (G, - )$ or $\mathrm{Ext} (- , G)$ commute with or invert certain direct sums or direct products.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc. 

References

Albrecht, U., Breaz, S. and Schultz, P., ‘The Ext-functor and self-sums’, Forum Math., to appear, Preprint, 2011.CrossRefGoogle Scholar
Albrecht, U., Breaz, S. and Schultz, P., ‘Functorial properties of $\mathrm{Hom} $ and $\mathrm{Ext} $’, Contemp. Math. 576 (2012), 115.CrossRefGoogle Scholar
Albrecht, U., Breaz, S. and Wickless, W., ‘Self-small abelian groups’, Bull. Aust. Math. Soc. 80 (2) (2009), 205216.CrossRefGoogle Scholar
Arnold, D. M. and Murley, C. E., ‘Abelian groups, $A$, such that $\mathrm{Hom} (A, - )$ preserves direct sums of copies of $A$’, Pacific J. Math. 56 (1975), 721.CrossRefGoogle Scholar
Breaz, S., ‘Direct products and the hom-contravariant functor’, Bull. Lond. Math. Soc., 44 (2012), 136138.CrossRefGoogle Scholar
Breaz, S., ‘Modules $M$ such that $\mathrm{Ext} (M, - )$ commutes with direct limits’, Algebr. Represent. Theory, to appear, Preprint, 2011.Google Scholar
Breaz, S. and Schultz, P., ‘When Ext commutes with direct sums’, J. Algebra Appl. 11 (2012), 4pp.CrossRefGoogle Scholar
Breaz, S. and Schultz, P., ‘Dualities for self-small abelian groups’, Proc. Amer. Math. Soc. 140 (2012), 6982.CrossRefGoogle Scholar
Fuchs, L., Infinite Abelian Groups, Vol. I (Academic Press, New York, 1970).Google Scholar
Fuchs, L., Infinite Abelian Groups, Vol. II (Academic Press, New York, 1973).Google Scholar
Göbel, R., Goldsmith, B. and Kolman, O., ‘On modules which are self-slender’, Houston J. Math. 35 (3) (2009), 725736.Google Scholar
Göbel, R. and Prelle, R., ‘Solution of two problems on cotorsion abelian groups’, Arch. Math. 31 (1978), 423431.CrossRefGoogle Scholar
Göbel, R. and Shelah, S., ‘Cotorsion theories and splitters’, Trans. Amer. Math. Soc. 352 (2000), 53575379.CrossRefGoogle Scholar
Göbel, R. and Trlifaj, J., Endomorphism Algebras and Approximations of Modules, Expositions in Mathematics, 41 (Walter de Gruyter, Berlin, 2006).CrossRefGoogle Scholar
Goldsmith, B. and Kolman, O., ‘On cosmall Abelian groups’, J. Algebra 317 (2007), 510518.CrossRefGoogle Scholar
Griffith, P., ‘A solution to the splitting mixed group problem of Baer’, Trans. Amer. Math. Soc. 139 (1969), 261269.CrossRefGoogle Scholar
Griffith, P., ‘The Baer splitting problem in the twentyfirst century’, Illinois J. Math. 47 (2003), 237250.CrossRefGoogle Scholar
Salce, L., ‘Classi di gruppi abeliani chiuse rispetto alle immagini omomorfe ed ai limiti proiettivi’, Rend. Semin. Mat. Univ. Padova 49 (1973), 17.Google Scholar
Salce, L., ‘Cotorsion theories for abelian groups’, Symposia Math. 23 (1979), 1132.Google Scholar
Schultz, P., ‘Self-splitting abelian groups’, Bull. Aust. Math. Soc. 64 (2001), 7179.CrossRefGoogle Scholar
Sierpinski, W., Cardinal and Ordinal Numbers, Monografie Matematyczne, 34 (Polska Akademia Nauk, Warsaw, 1958).Google Scholar
Strüngmann, L., ‘Torsion groups in cotorsion classes’, Rend. Semin. Mat. Univ. Padova 107 (2002), 3555.Google Scholar
Strüngmann, L. and Wallutis, S., ‘On the torsion groups in cotorsion classes’, in: Abelian Groups, Rings and Modules. Proceedings of the AGRAM 2000 Conference, Perth, Australia, July 9–15, 2000, Contemporary Mathematics, 273 (eds. Kelarev, A. V., Göbel, R., Rangaswamy, K. M., Schultz, P. and Vinsonhaler, C.) (American Mathematical Society, Providence, RI, 2001), 269283.Google Scholar