Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T04:04:28.148Z Has data issue: false hasContentIssue false

CHEBYSHEV POLYNOMIALS ON JULIA SETS AND EQUIPOTENTIAL CURVES FOR THE FAMILY P(z)=zdc

Published online by Cambridge University Press:  01 April 2009

YINGQING XIAO*
Affiliation:
School of Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China
WEIYUAN QIU
Affiliation:
School of Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China (email: wyqiu@fudan.edu.cn)
*
For correspondence; e-mail: xiaoyingqing@yahoo.com.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that the dnth Chebyshev polynomials on the Julia set JP, and on the equipotential curve ΓP(R), of the polynomial P(z)=zdc, are identical and exactly equal to the nth iteration of P(z) itself. As an application, the capacity of the Julia set JP is deduced, a result that was first obtained by Brolin.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

Footnotes

This work is supported by NNSF No. 10571028.

References

[1]Ahlfors, L. V., Conformal Invariants, Topics in Geometric Function Theory (McGraw-Hill Book Company, 1973).Google Scholar
[2]Barnsley, M. F., Geronimo, J. S. and Harrington, A. N., ‘Some tree-like Julia sets and Padé approximations’, Lett. Math. Phys. 7 (1983), 186279.Google Scholar
[3]Beardon, A. F., Iteration of Rational Functions (Springer, Berlin, 1991).Google Scholar
[4]Brolin, H., ‘Invariant sets under iteration of rational functions’, Ark. Mat. 6 (1965), 103144.CrossRefGoogle Scholar
[5]Faber, G., ‘Über Tschebyscheffsche Polynome’, J. Reine. Angew. Appl. Math. 150 (1920), 79106.Google Scholar
[6]Fatou, P., ‘Sur les équations fonctionelles’, Bull. Soc. Math. France 47 (1919), 161271; 48 (1920), 33–94, 208–314.Google Scholar
[7]Fischer, B., ‘Chebyshev polynomials for disjoint compact sets’, Constr. Approx. 8 (1992), 309329.Google Scholar
[8]Julia, G., ‘Mémoire sur l’itération des fonctions rationelles’, J. Math. Pures Appl. Ser. 8(1) (1918), 47245.Google Scholar
[9]Milnor, J., Dynamics in One Complex Variable. Introductory Lectures (Vieweg, Braunschweig, 1999).Google Scholar
[10]Montel, P., Leçons sur les familles normales de fonctions analytiques et leurs applications (Gauthier-Villars, Paris, 1927).Google Scholar
[11]Stawiska, M., ‘Chebyshev polynomials on equipotential curves of a quadratic Julia set’, Univ. Iagel. Acta Math. 33 (1996), 191198.Google Scholar