Hostname: page-component-cb9f654ff-p5m67 Total loading time: 0 Render date: 2025-08-22T20:28:17.222Z Has data issue: false hasContentIssue false

CHARACTERISATION OF DISTAL ACTIONS OF AUTOMORPHISMS ON THE SPACE OF ONE-PARAMETER SUBGROUPS OF LIE GROUPS

Published online by Cambridge University Press:  15 August 2025

DEBAMITA CHATTERJEE
Affiliation:
School of Physical Sciences, https://ror.org/0567v8t28 Jawaharlal Nehru University , New Delhi 110 067, India e-mail: debamita.math@gmail.com
RIDDHI SHAH*
Affiliation:
School of Physical Sciences, https://ror.org/0567v8t28 Jawaharlal Nehru University , New Delhi 110 067, India e-mail: rshah@jnu.ac.in

Abstract

For a connected Lie group G and an automorphism T of G, we consider the action of T on Sub$_G$, the compact space of closed subgroups of G endowed with the Chabauty topology. We study the action of T on Sub$^p_G$, the closure in Sub$_G$ of the set of closed one-parameter subgroups of G. We relate the distality of the T-action on Sub$^p_G$ with that of the T-action on G and characterise the same in terms of compactness of the closed subgroup generated by T in Aut$(G)$ when T acts distally on the maximal central torus and G is not a vector group. We extend these results to the action of a subgroup of Aut$(G)$ and equate the distal action of any closed subgroup ${\mathcal H}$ on Sub$^p_G$ with that of every element in ${\mathcal H}$. Moreover, we show that a connected Lie group G acts distally on Sub$^p_G$ by conjugation if and only if G is either compact or is isomorphic to a direct product of a compact group and a vector group. Some of our results generalise those of Shah and Yadav.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Communicated by G. Willis

The authors would like to acknowledge the support in part by the International Centre for Theoretical Sciences (ICTS) during a visit for participating in the program—ICTS Ergodic Theory and Dynamical Systems (code: ICTS/etds-2022/12).

References

Abels, H., ‘Distal affine transformation groups’, J. reine angew. Math. 299/300 (1978), 294300.Google Scholar
Abels, H., ‘Distal automorphism groups of Lie groups’, J. reine angew. Math. 329 (1981), 8287.Google Scholar
Baik, H. and Clavier, L., ‘The space of geometric limits of one-generator closed subgroups of ${\mathrm{PSL}}_2(\mathbb{R})$ ’, Algebr. Geom. Topol. 13 (2013), 549576.10.2140/agt.2013.13.549CrossRefGoogle Scholar
Baik, H. and Clavier, L., ‘The space of geometric limits of abelian subgroups of PSL ${}_2(\mathbb{C})$ ’, Hiroshima Math. J. 46 (2016), 136.10.32917/hmj/1459525928CrossRefGoogle Scholar
Bass, H., ‘Groups of integral representation type’, Pacific J. Math. 86 (1980), 1551.10.2140/pjm.1980.86.15CrossRefGoogle Scholar
Benedetti, R. and Petronio, C., Lectures on Hyperbolic Geometry, Universitext (Springer, Berlin, 1992).10.1007/978-3-642-58158-8CrossRefGoogle Scholar
Bhattacharya, S., ‘Expansiveness of algebraic actions on connected groups’, Trans. Amer. Math. Soc. 356 (2004), 46874700.10.1090/S0002-9947-04-03590-1CrossRefGoogle Scholar
Bridson, M. R., de la Harpe, P. and Kleptsyn, V., ‘The Chabauty space of closed subgroups of the three-dimensional Heisenberg group’, Pacific J. Math. 240 (2009), 148.10.2140/pjm.2009.240.1CrossRefGoogle Scholar
Chevalley, C., Theory of Lie Groups (Princeton University Press, Princeton, NJ, 1946).Google Scholar
Choudhuri, M., Faraco, G. and Yadav, A. K., ‘On the distality and expansivity of certain maps on spheres’, Dyn. Syst. 39 (2024), 166181.10.1080/14689367.2023.2248013CrossRefGoogle Scholar
Conze, J. P. and Guivarc’h, Y., ‘Remarques sur la distalité dans les espaces vectoriels’, C. R. Acad. Sci. Paris Ser. A 278 (1974), 10831086.Google Scholar
Dani, S. G., ‘On automorphism groups of connected Lie groups’, Manuscripta Math. 74 (1992), 445452.10.1007/BF02567680CrossRefGoogle Scholar
Dani, S. G. and McCrudden, M., ‘Convolution roots and embeddings of probability measures on Lie groups’, Adv. Math. 209 (2007), 198211.10.1016/j.aim.2006.05.002CrossRefGoogle Scholar
Dani, S. G. and Shah, R., ‘Contractible measures and Levy’s measures on Lie groups’, in: Probability on Algebraic Structures, Contemporary Mathematics, 261 (eds. Budzban, G., Feinsilver, P. and Mukherjea, A.) (AMS, 2000), 313.10.1090/conm/261/04129CrossRefGoogle Scholar
Dani, S. G. and Shah, R., ‘On the almost algebraicity of groups of automorphisms of connected Lie groups’, Preprint, 2025, arXiv:2504.18641.Google Scholar
Ellis, R., ‘Distal transformation groups’, Pacific J. Math. 8 (1958), 401405.10.2140/pjm.1958.8.401CrossRefGoogle Scholar
Fresnel, J. and van der Put, M., ‘Compact subgroups of’, Rend. Semin. Mat. Univ. Padova 116 (2006), 187192.Google Scholar
Furstenberg, H., ‘The structure of distal flows’, Amer. J. Math. 85 (1963), 477515.10.2307/2373137CrossRefGoogle Scholar
Gelander, T., ‘A lecture on invariant random subgroups’, in: New Directions in Locally Compact Groups, London Mathematical Society Lecture Notes, 447 (eds. P.-E. Caprace and N. Monod) (Cambridge University Press, Cambridge, 2018), 186204.10.1017/9781108332675.014CrossRefGoogle Scholar
Hamrouni, H. and Kadri, B., ‘On the compact space of closed subgroups of locally compact groups’, J. Lie Theory 24 (2014), 715723.Google Scholar
Hazod, W. and Siebert, E., ‘Automorphisms on a Lie group contracting modulo a compact subgroup and applications to semistable convolution semigroups’, J. Theoret. Probab. 1 (1988), 211225.10.1007/BF01046936CrossRefGoogle Scholar
Hochschild, G., ‘The automorphism group of a Lie group’, Trans. Amer. Math. Soc. 72 (1952), 209216.Google Scholar
Hochschild, G., The Structure of Lie Groups (Holden-Day, San Francisco, CA, 1965).Google Scholar
Hofmann, K. H. and Neeb, K.-H., ‘The compact generation of closed subgroups of locally compact groups’, J. Group Theory 12 (2009), 555559.10.1515/JGT.2008.096CrossRefGoogle Scholar
Iwasawa, K., ‘On some types of topological groups’, Ann. of Math. (2) 50 (1949), 507558.10.2307/1969548CrossRefGoogle Scholar
Jaworski, W., ‘Contraction groups, ergodicity and distal properties of automorphisms on compact groups’, Illinois J. Math. 56 (2012), 10231084.10.1215/ijm/1399395822CrossRefGoogle Scholar
Jenkins, J., ‘Growth of connected locally compact groups’, J. Funct. Anal. 12 (1973), 113127.10.1016/0022-1236(73)90092-XCrossRefGoogle Scholar
Kloeckner, B., ‘The space of closed subgroups of ${\mathbb{R}}^n$ is stratified and simply connected’, J. Topol. 2 (2009), 570588.10.1112/jtopol/jtp022CrossRefGoogle Scholar
Knapp, A. W., Lie Groups Beyond an Introduction, 2nd edn, Progress in Mathematics, 140 (Birkhäuser Boston Inc., Boston, MA, 2002).Google Scholar
Moore, C. C., ‘Distal affine transformation groups’, Amer. J. Math. 90 (1968), 733751.10.2307/2373481CrossRefGoogle Scholar
Palit, R., Prajapati, M. B. and Shah, R., ‘Dynamics of actions of automorphisms of discrete groups $G$ on Sub ${}_G$ and applications to lattices in Lie groups’, Groups Geom. Dyn. 17 (2023), 185213.10.4171/ggd/672CrossRefGoogle Scholar
Palit, R. and Shah, R., ‘Distal actions of automorphisms of nilpotent groups $G$ on Sub ${}_G$ and applications to lattices in Lie groups’, Glasg. Math. J. 63 (2021) 343362.10.1017/S0017089520000221CrossRefGoogle Scholar
Pourezza, I. and Hubbard, J., ‘The space of closed subgroups of ${\mathbb{R}}^2$ ’, Topology 18 (1979), 143146.10.1016/0040-9383(79)90032-6CrossRefGoogle Scholar
Raja, C. R. E. and Shah, R., ‘Distal actions and shifted convolution property’, Israel J. Math. 177 (2010), 301318.10.1007/s11856-010-0052-7CrossRefGoogle Scholar
Raja, C. R. E. and Shah, R., ‘Some properties of distal actions on locally compact groups’, Ergodic Theory Dynam. Systems 39 (2019) 13401360.10.1017/etds.2017.58CrossRefGoogle Scholar
Rosenblatt, J., ‘A distal property of groups and the growth of connected locally compact groups’, Mathematika 26 (1979), 9498.10.1112/S0025579300009669CrossRefGoogle Scholar
Shah, R., ‘Expansive automorphisms on connected locally compact groups’, New York J. Math. 26 (1920), 285302.Google Scholar
Shah, R., ‘Orbits of distal actions on locally compact groups’, J. Lie Theory 22 (2010), 586599.Google Scholar
Shah, R. and Yadav, A. K., ‘Dynamics of certain distal actions on spheres’, Real Anal. Exchange 44 (2019), 7788.10.14321/realanalexch.44.1.0077CrossRefGoogle Scholar
Shah, R. and Yadav, A. K., ‘Distally of certain actions on $p$ -adic spheres’, J. Aust. Math. Soc. 109 (2020), 250261.10.1017/S1446788719000272CrossRefGoogle Scholar
Shah, R. and Yadav, A. K., ‘Errata: Dynamics of certain distal actions on spheres’, Real Anal. Exchange 47 (2022), 467468.10.14321/realanalexch.47.2.1654759107CrossRefGoogle Scholar
Shah, R. and Yadav, A. K., ‘Distal action of automorphisms of Lie groups $G$ on ${\mathrm{Sub}}_G$ ’, Math. Proc. Cambridge Philos. Soc. 173 (2022), 457478.10.1017/S0305004121000694CrossRefGoogle Scholar
Siebert, E., ‘Contractive automorphisms on locally compact groups’, Math. Z. 191 (1986), 7390.10.1007/BF01163611CrossRefGoogle Scholar
Stroppel, M., Locally Compact Groups, EMS Textbooks in Mathematics (European Mathematical Society (EMS), Zürich, 2006).10.4171/016CrossRefGoogle Scholar
Wang, S. P., ‘On the limit of subgroups in a group’, Amer. J. Math. 92 (1970), 708724.10.2307/2373369CrossRefGoogle Scholar