Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:18:46.882Z Has data issue: false hasContentIssue false

CAUCHY–MIRIMANOFF AND RELATED POLYNOMIALS

Published online by Cambridge University Press:  27 September 2012

PAUL M. NANNINGA*
Affiliation:
Centre for Mathematics and its Applications, Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia (email: paul.nanninga@anu.edu.au)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1903 Mirimanoff conjectured that Cauchy–Mirimanoff polynomials En are irreducible over ℚ for odd prime n. Polynomials Rn, Sn, Tn are introduced, closely related to En. It is proved that Rm, Sm, Tm are irreducible over ℚ for odd m≥3 , and En, Rn, Sn are irreducible over ℚ, for n=2qm, q=1,2,3,4,5 , and m≥1 odd.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2012

References

[1]Beukers, F., ‘On a sequence of polynomials’, J. Pure Appl. Algebra 117/118 (1997), 97103.Google Scholar
[2]Cauchy, A. and Liouville, J., ‘Rapport sur un mémoire de M. Lamé relatif au dernier théorème de Fermat’, C. R. Acad. Sci. Paris 9 (1839), 359363.Google Scholar
[3]Helou, C., ‘Cauchy–Mirimanoff polynomials’, C. R. Math. Rep. Acad. Sci. Canada 19(2) (1997), 5157.Google Scholar
[4]Irick, B. C., ‘On the irreducibility of the Cauchy–Mirimanoff polynomials’, PhD dissertation, University of Tennessee, Knoxville, 2010.Google Scholar
[5]Klösgen, W., ‘Untersuchungen über Fermatsche Kongruenzen’, Gesellschaft Math. Datenverarbeitung, Nr. 36, Bonn, 1970.Google Scholar
[6]Mirimanoff, D., ‘Sur l’équation (x+1)lx l−1=0’, Nouv. Ann. Math. 3 (1903), 385397.Google Scholar
[7]Ribenboim, P., Fermat’s Last Theorem for Amateurs (Springer, New York, 1999).Google Scholar
[8]Stewart, I. and Tall, D., Algebraic Number Theory and Fermat’s Last Theorem, 3rd edn (A. K. Peters, Natick, MA, 2002).Google Scholar
[9]Terjanian, G., ‘Sur la loi de réciprocité des puissances l-èmes’, Acta Arith. 54(2) (1989), 87125.Google Scholar
[10]Tzermias, P., ‘On Cauchy–Liouville–Mirimanoff polynomials’, Canad. Math. Bull. 50(2) (2007), 313320.Google Scholar